期刊文献+

空化热力学效应对相间质量传输过程的影响 被引量:1

Thermodynamics Effect on the Mass Transport Process in Cavitation
下载PDF
导出
摘要 为了分析空化热力学效应对相间质量传输过程的影响,应用二次开发技术在商业软件中引入修正的Merkle空化模型及液氮物性参数随流场温度的变化,并在能量方程的源项中考虑了空化的影响,对绕对称回转体液氮空化流动进行了计算.通过将计算结果与实验数据进行对比,对计算方法进行了验证.基于数值计算结果分析了空化热力学效应对质量传输过程的影响.相间质量传输过程包括蒸发和凝结过程.在蒸发过程中,低温流体空化的发展不仅与当地空化数σ有关,且依赖于流场的密度比R(T).随温度升高,液体/蒸汽的密度比梯度(dR/dT)增加,导致蒸发量减小;随温度升高,饱和蒸汽压变化梯度升高,导致蒸发量减小.凝结过程中,随温度升高,(1-φl)值减小,凝结量减小;随温度升高,max(0,Cp+σ)值增大,凝结量增加. In order to analyze the influence of thermal effect on the mass transport process in cavitation,the modified Merkle cavitation model and the material properties of the liquid nitrogen at different temperatures are introduced into a software solver via a UDF(user defined function) with the consideration of cavitation influence on source term in energy equation.Computations are then conducted on an axisymmetric ogive in nitrogen under various cavitation conditions.The results are compared with the experimental data to verify the numerical method.Based on the numerical results,the influence of the thermal effect on the mass transport process could be analyzed as follows.The mass transport process includes the processes of evaporation and condensation.In the evaporation process,the cavitation characteristics is not only related to the local cavitation number σ,but also dependent on the liquid-vapour density ratio R(T).With temperature increasing,the gradient of liquid/vapor density ratio dR/dT increases,which would tend to decrease the strength of the evaporation rate;on the other hand,with temperature increasing,the gradient of vapor pressure becomes larger,which would suppress the evaporation rate.In the condensation process,with temperature increasing,(1-φl) becomes smaller,that leads to the decrease of condensation rate;while,the increase of max(0,Cp+σ) leads to the strength increase of the condensation rate.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2012年第9期926-931,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(50979004) 国家教育部高等学校博士学科点专项科研基金资助课题(200800070027)
关键词 空化 液氮 热力学效应 质量传输 cavitation liquid nitrogen thermal effect mass transport
  • 相关文献

参考文献11

  • 1Franc J, Rebattet C, Coulon A. An experimental investigation of thermal effects in a cavitating inducer[J].Journal of Fluids Engineering, 2004, 126: 716- 723.
  • 2]Stahl H, Stepanoff A. Thermodynamic aspects of cavitation in centrifugal pumps[J]. Journal of Basic En- gineering, 1956,78:1691 - 1693.
  • 3Watanabe S, Hidaka T, Horiguchi H. Steady analysis of the thermodynamic effect of partial cavitation using the singularity method [J].Journal of Fluids Engineering, 2007,129 : 121 - 127.
  • 4Rapposelli E, d' Agostino L. A Barotropic cavitationmodel with thermodynamic effects[C]//Proceedings of the Fifth International Symposium on Cavitation. Osaka, Japan: [s. n. ], 2003:1 - 9.
  • 5Hosangadi A, Ahuja V. Numerical study of cavitation in cryogenic fluids[J]. Journal of Fluids Engineering, 2005,127:267 - 281.
  • 6Hord J. Cavitation in liquid cryogenics, III-Ogive, NASA-CR-2242 [ R ]. Washington D. C:. NASA, 1973.
  • 7Menter F. Improved two-equation -- -w turbulence models for aerodynamic flows NASA TM-103975 [R]. Washington D. C. : NASA,1992.
  • 8Merkle C L, Feng J, Buelow P E O. Computational modeling of dynamics of sheet cavitation [ C] // Proceedings of the 3rd International Symposium on Cavitation. Grenoble, France: [s. n.], 1998: 307- 313.
  • 9Singhal A, Athavale M. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002,124 : 617 - 624.
  • 10Chien-Chou Tseng,Yingjie Wei,GuoyuWang,Wei Shyy.Modeling of turbulent,isothermal and cryogenic cavitation under attached conditions[J].Acta Mechanica Sinica,2010,26(3):325-353. 被引量:11

二级参考文献92

  • 1Utturkar, Y., Wu, J., Wang, G., Shyy, W.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog. Aerosp. Sci. 41(7), 558-608 (2005).
  • 2Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw- Hill, New York (1970).
  • 3Brennen, C.E.: Cavitation and Bubble Dynamics, Oxford Engineering & Sciences Series 44. Oxford University Press, Oxford (1995).
  • 4Joseph, D.D.: Cavitation in a flowing liquid. Phys. Rev. E. 51(3), 1649-1650 (1995).
  • 5Joseph, D.D.: Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367-378 (1998).
  • 6Lemmon, E.W., McLinden, M.O., Huber, M.L.: REFPROP: Reference Fluid Thermodynamic and Transport Properties. NIST Standard Database 23, version 7.0 (2002).
  • 7Sonntag, R.E., Borgnakke, C., Wylen, G.J.: Fundamentals of T thermodynamics. Wiley, New York (2004).
  • 8Ruggeri, R.S., Moore, R.D.: Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperatures and Rotative Speeds. NASA TN D-5292 (1969).
  • 9Goel, T., Zhao, J., Thakur, S., Haftka, R.T., Shyy, W., Zhao, J.: Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation. Int. J. Numer. Meth. Fluids. 58, 969-1007 (2008).
  • 10Wang, G., Senocak, I., Shyy, W., Ikohagi, T., Cao, S.: Daynam- ics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37, 551-581 (2001).

共引文献10

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部