期刊文献+

预不变凸模糊数值函数的对偶问题

Dual Problem of Preinvex Fuzzy-valued Function
下载PDF
导出
摘要 利用具有权重意义的模糊数距离,讨论了预不变凸模糊数值函数的Lagrangian对偶问题. Based on the weighted signed distance of fuzzy numbers, the Lagrangian dual problem of preinvex fuzzy-valued function is discussed.
作者 白玉娟
出处 《河西学院学报》 2012年第5期23-26,共4页 Journal of Hexi University
关键词 模糊数 模糊数值函数 预不变凸性 Fuzzy number Fuzzy-valued function Preinvex
  • 相关文献

参考文献9

  • 1Soleimani-damaneh M. Fuzzy upper bounds and their applications [J]. Chaos, Solitons and Fra-Ctals,2008(36) :217-225.
  • 2张成,杨万才.模糊规划的对偶理论[J].辽宁师范大学学报(自然科学版),2005,28(1):1-6. 被引量:6
  • 3Gong Z.T, Li H.X. Saddle Point Optimality Conditions in Fuzzy Optimization Problems [J]. Fuzzy Information and Engi-neering, 2008(54); 7-14.
  • 4Zhang C, Yuan X.H, E.S.Lee. Duality Theorems in Fuzzy Mathematical Programming Problems with Fuzzy Coefficients [J].Computers and Mathematics with Applications, 2005(49) : 1709-1730.
  • 5Goetschel Jr R. Voxman W. Elementary fuzzy calculus. Fuzzy Sets and Systems, 1986(18) : 31-43.
  • 6李红霞,巩增泰.模糊数值函数的凸性与可导性[J].西北师范大学学报(自然科学版),2007,43(5):1-6. 被引量:11
  • 7巩增泰,白玉娟.预不变凸模糊数值函数及其应用[J].西北师范大学学报(自然科学版),2010,46(1):1-5. 被引量:9
  • 8WU Hsien-chun. Saddle point optimality conditions in fuzzy optimization problems [J]. Fuzzy Opt-imization and DecisionMaking, 2003(3):261-273.
  • 9Wu Hsien-Chung. Duality theorems and saddle point optimality conditions in fuzzy nonlinear pro-gramming problems basedon different solution concepts [J]. Fuzzy Sets and Systems, 2007(158): 1588-1607.

二级参考文献38

  • 1吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 2NANDA S, KAR K. Convex fuzzy mappings[J]. Fuzzy Sets and Systems, 1992, 48: 129-132.
  • 3SYAU Y R. Generalization of preinvex and B-vex fuzzy mappings[J]. Fuzzy Sets and Systems, 2001, 120: 533-542.
  • 4PANIGRAHI M, PANDA G, NANDA S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization [J]. European Journal of Operational Research, 2007, 185:47-62.
  • 5NOOR M A. Fuzzy preinvex functions[J]. Fuzzy Sets and Systems, 1994, 64: 95-104.
  • 6GOETSCHEL Jr R, VOXMAN W. Elementary fuzzy calculus[J]. Fuzzy Sets and Systems. 1986, 18: 31-43.
  • 7SYAU Y R, LEE E S. Preinvexity and O1 - convexity of fuzzy mappings through a linear ordering[J].Computers and Mathematics with Applications, 2006, 511 405-418.
  • 8YANG Xin-min, LI Duan. On properties of preinvex functions[J]. J Math Anal Appl, 2001, 256(1): 229-241.
  • 9WU Ze-zhong, XU Jiu - ping. Generalized convex fuzzy mappings and fuzzy variational-like inequality[J]. Fuzzy Sets and Systems, 2009, 160(11): 1590-1619.
  • 10吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991.84-96.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部