期刊文献+

基于PDTDFB域混合建模的纹理图像检索 被引量:4

Texture Image Retrieval Based on Hybrid Modeling in PDTDFB
下载PDF
导出
摘要 为了联合考虑特征提取和相似性测度以提高图像检索系统的性能,提出一种基于金字塔双树方向滤波器组(PDTDFB)域混合建模的纹理图像检索方法.首先将高频子带系数建模为广义高斯分布,将复方向带通子带的幅值系数建模为Weibull分布,并通过改进的最大似然估计方法确定其分布参数;然后采用一种新的相似性测度分别对VisTex和Brodatz数据库的纹理图像进行检索,得到和查询图像相似的图像子集.实验结果表明,与采用单一统计建模的方法相比较,该方法有效地提高了纹理图像的平均检索率. For improving the performance of image retrieval systems, feature extraction and similarity measurement are used jointly. In this paper, a method of texture image retrieval which is based on hybrid modeling in the pyramid dual-tree directional filter bank (PDTDFB) is proposed. First, coefficients of the high frequency subbands are modeled as generalized Gaussian distribution, and the magnitude coefficients of the complex directional bandpass subbands are modeled as Weibull distribution. The parameters are estimated by an improved maximum likelihood method. Then, the texture images of the VisTex and Brodatz databases are retrieved respectively based on a new similarity measurement. Accordingly the image subsets similar to the query images are selected. The experimental results demonstrate that the proposed method can improve the average retrieval rate of the texture images effectively, comparing with the approaches using the single statistical modeling.
作者 曲怀敬
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第10期1329-1336,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(30870666)
关键词 金字塔双树方向滤波器组 广义高斯分布 WEIBULL分布 统计建模 纹理图像检索 pyramid dual-tree directional filter bank generalized Gaussian distribution Weibull distribution statistical modeling texture image retrieval
  • 相关文献

参考文献13

  • 1Do M N, Vetterli M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[J]. IEEE Transactions on Image processing, 2002, 11 (2): 146-158.
  • 2Vasconcelos N, Lippman A. A probabilistic architecture for content-based image retrieval [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2000 : 216-221.
  • 3Amin T, Zeytinoglu M, Guan L. Application of Laplacian mixture model to image and video retrieval[J]. IEEE Transactions on Multimedia, 2007, 9 (7) : 1416-1429.
  • 4Choy S K, Tong C S. Statistical wavelet subband characterization based on generalized Gamma density and its application in texture retrieval[J]. IEEE Transactions on Image Processing, 2010, 19 (2): 281-289.
  • 5Kwitt R, Uhl A. Image similarity measurement by Kullback- Leibler divergences between complex wavelet subband statistics for texture retrieval [C] //Proceedings of the 15th IEEE International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2008:933-936.
  • 6Lasmar N E, Stitou Y, Berthoumieu Y. Multiscale skewed heavy tailed model for texture analysis [C]//Proceedings of the 16th IEEE International Conference on Image Processing. Los Alamitos: IEEE Computer Soeiety Press, 2009: 2281- 2284.
  • 7Rakvongthai Y, Oraintara S. Statistical image modeling with the magnitude probability density function of complex wavelet coefficients [C]//Proceedings of IEEE InternationalSymposium on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2009 :1879-1882.
  • 8Kwitt R, Uhl A. Lightweight probabilistic texture retrieval [J]. IEEE Transactions on Image Processing, 2010, 19 (1) 241-253.
  • 9Allili M S, Baaziz N. Contourlet-based texture retrieval using a mixture of generalized Gaussian distributions[M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2011, 6855:446-454.
  • 10金炜,励金祥,尹曹谦.架构于双树轮廓波及GGD模型的纹理图像检索[J].光电工程,2009,36(8):89-93. 被引量:1

二级参考文献9

  • 1孙君顶,毋小省.基于熵及不变矩特征的图像检索[J].光电工程,2007,34(6):102-106. 被引量:14
  • 2M Oussalah. Content based image retrieval: review of state of art and future directions [C]//Image Processing Theory, Tools and Applications, 2008. IPTA 2008. First Workshops on, Sousse Tunisia, Nov 23-26, 2008: 1-10.
  • 3Do M N, Vetterli M. Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance [J]. IEEE Trans. on Image Processing(S1057-7149), 2002, 11(2): 146-158.
  • 4Do M N, Vetterli M. The contourlet transform: an efficient directinal multiresolution image representation [J]. IEEE Trans. on Image Processing(S1057-7149), 2005, 14(12): 2091-2106.
  • 5Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Trans. on Image Processing(S1057-7149), 2006, 15(10): 3089-3101.
  • 6Nguyen T T, Oraintara S. The shiftable complex directional pyramid: Theoretical aspects [J]. IEEE Trans. on Signal Processing(S1053-587X), 2008, 56(10): 4651-4659.
  • 7Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform [J]. IEEE Signal Processing Magazine(S1053-5888), 2005, 22(6): 123-151.
  • 8Po D D, Do M N. Directional multiscale modeling of images using the contourlet transform [J]. IEEE Trans. on Image Processing(S1057-7149), 2006, 15(6): 1610-1620.
  • 9练秋生,李芹,孔令富.融合圆对称轮廓波统计特征和LBP的纹理图像检索[J].计算机学报,2007,30(12):2198-2204. 被引量:15

同被引文献51

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2王改梅,刘瑞光,刘芳.基于小波包变换的纹理图像检索[J].计算机工程与应用,2004,40(18):44-46. 被引量:14
  • 3R. Kwitt,A. Uhl. Image Similarity Measurement by Kullback- Leibler Divergences between Complex Wavelet Subband Statics for Texture Retrieval[C]. In Proceedings of the IEEE International Conference on Image Processing. California: ICIP'2008,2008:933-936.
  • 4罗佳,石跃祥,段德友.基于SIFT特征的人脸识别方法[J].汁算机工程.2010.7:173-175.
  • 5Huang N E, et all. The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-Stationary Time Series Analysis [C]. In: Proceedings of Royal Society. London:The Royal Society, 1998, 903-995.
  • 6J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang,Ph. Bunel. hnage Analysis by Bidimensional Empirical Mode Decomposition[J]. Image and Vision Computing, 2003,21: 1019-1026.
  • 7Sharif M. A. Bhuiyan, Reza R. Adhami and F.Jesmin. Fast and Adaptive Bidimensional Empirical Mode Decomposition using a Novel Approach of Envelope Estimation[C]. IEEE Internaionl Conference, Rome,2008.
  • 8Bhuiyan SMA,Adhami RR,Khan JF.Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order- Statistics Filter Based Envelope Estimation[J]. Journal on Advances in Signal Processing, 2008.
  • 9杨家红,许灿辉,王耀南.基于Contourlet广义高斯模型的纹理图像检索[J].中国图象图形学报,2007,12(4):691-694. 被引量:11
  • 10Do M N,Vetterli M.Wavelet-based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance[J].IEEE Transactions on Image Processing,2002,11(2):146-158.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部