期刊文献+

基于分段常值水平集的参数识别算法

A New Algorithm for Parameter Identification Based on Piecewise Constant Level Set Method
下载PDF
导出
摘要 研究了椭圆方程不连续参数的识别算法.根据原有算法计算效率较低、抗噪性较差、可识别区域数较少的不足,本文基于分段常值水平集方法,根据水平集函数和优化过程的特点,修正原有Uzawa型算法中的带有总变差(TV)正则化的极小化模型和对常值向量的极小化模型,并且结合Barzilai-Borwein方法和预处理共轭梯度算法(PCG)构造一种新的参数识别算法格式.数值实验结果显示,新算法具有计算时间短、精度高、抗噪性强的优点,并且可以识别较复杂的几何区域. We apply a piecewise constant level set method to elliptic inverse problems. The discontinuity of the co- efficients is represented implicitly by a piecewise constant level set function, which allows to use one level set function to represent multiple phases. The inverse problem is solved using a variational penalization method with the total variation regularization of the level set function. According to the feature of level set function and optimization process, the existing minimization functional in Uzawa algorithm and original algorithm are modified, and a Barzilai- Borwein gradient method and preconditioned conjugate gradient algorithm are used to get efficient and robust numer- ical schemes for solving the obtained problem. Numerical experiments show that the new method can recover coefficients with rather complicated geometry of discontinuities and it has advantages of high precision and strong performance of anti-noise.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2012年第4期259-264,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(60971132 40874044) 中央高校基本科研业务费专项资金(09CX04004A) 中国石油大学研究生创新基金资助项目(CXYB11-16)
关键词 参数识别 TV正则化 分段常值水平集 Barzilai-Borwein方法 PCG parameter identification TV regularization PCLSM Barzilai-Borwein gradient method PCG
  • 相关文献

参考文献11

  • 1Lie J, Lysaker M, Tai Xueeheng. A variant of the level set method and applications to image segmentation [ J ]. Mathe- matics of Computation, 2006, 75 ( 255 ) : 1155-1174.
  • 2Tai Xuecheng, Li Hongwei. A piecewise constant level set method for elliptic inverse problems [ J ]. Applied Numerical Mathematics, 2007, 57: 686-696.
  • 3Vogel C R. Sparse matrix computations arising in discon- tinuous parameter identification [ J ]. SIAM Journal on Matrix A- nalysis and Applications, 1999, 4(20) : 1027-1037.
  • 4Doel K, Ascher U M. On level set regularization for high- ly ill-posed distribution parameter estimation problems [ J ]. Journal of Computational Physics, 2006, 216:707-723.
  • 5Chan T F, Tai Xuecheng. Level set and total variation regularization for elliptic inverse problems with discontinues co- efficient [J]. Journal of Computational Physics, 2004, 193:40 -66.
  • 6Chan T F, Tai Xuecheng. Identification of discontinuous coefficients elliptic problems using total variation regularization [J]. Siam J Sci Comput, 2003, 3(25) : 881-904.
  • 7Hongwei Li Center for Integrated Petroleum Research,University of Bergen,Norway,Department of Mathematics,Capital Normal University,Beijing 100037,China Xuecheng Tai Department of Mathematics,University of Bergen,Norway,Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore Sigurd Ivar Aanonsen Center for Integrated Petroleum Research,University of Bergen,Norway,Department of Mathematics,University of Bergen,Norway.RESERVOIR DESCRIPTION BY USING A PIECEWISE CONSTANT LEVEL SET METHOD[J].Journal of Computational Mathematics,2008,26(3):365-377. 被引量:3
  • 8Tai Xuecheng, Chan T F. A survey on multiple level set methods with applications for identifications piecewise constant functions [ J ]. International Journal of numerical analysis and modeling, 2004, 1(1): 25-47.
  • 9Lien M, Berre I, Mannseth T. Combined adaptive multi- scale and level set parameter estimation [ J ]. Muhiscale Model Simul, 2006, 4(4) : 1349-1372.
  • 10Lien M, Berre I, Mannseth T. Multi-level parameter structure identification for two-phase porous-media flow problems using flexible representations [ J ]. Advances in Water Re- sources, 2009, 32: 1777-1788.

二级参考文献26

  • 1T. Chan and X.C. Tai, Identification of discontinuous coefficients from elliptic problems using total variation regularization, SIAM J. Sci. Comput., 25 (2003), 881-904.
  • 2S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algrithms based on hamilton-jacobi formulations, J. Comput. Phys., 79 (1988), 12-49.
  • 3M. Burger, A level set method for inverse problems, Inverse probl., 17 (2001), 1327-1355.
  • 4K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem, Inverse probl., 17 (20011, 1225-1242.
  • 5U. Ascher and E. Haber, Computational methods for large distributed parameter estimation problems with possible discontinuities, Symp. Inverse Problems, Design and Optimization, (2004).
  • 6R. Villegas, O. Dorn, M. Kindelan and M. Moscoso, Imaging low sensitivity regions in petroleum reservoirs using topological perturbations and level sets, Journal of Inverse and Ill-posed Problems, 15:2 (2007), 199-223.
  • 7R. Villegas, O. Dorn, M. Moscoso, M. Kindelan and F. Mustieles, Simultaneous characterization of geological shapes and permeability distributions in reservoirs using the level set method, paper spe 100291, Proc. SPE Europec/EAGE Annual Conference and Exhibition, pages 1-12, Vienna, Austria, June 12-15, 2006.
  • 8J. Lie, M. Lysaker and X.C. Tai, A variant of the level set method and applications to image segmentation, Math. Comput., 75:255 (2006), 1155-1174 (electronic).
  • 9J. Lie, M. Lysaker and X.C. Tai, A binary level set model and some applications to mumford-shah image segmentation, IEEE T. Image Process., 15:5 (2006), 1171-1181.
  • 10B. Song and T. Chan, A fast algorithm for level set based optimization, Technical report, Camreport-02-68, UCLA, Applied Mathematics, 2002.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部