摘要
利用二阶Steklov平均和Lorentz-Hermann引理 ,给出并证明了加权的点态逼近等价定理 ,该定理不仅用于对有界函数逼近 ,而且用于对无界函数逼近 ,并适用于一大类正线性算子 .
By means of second Steklov average and Lorentz-Hermann lemma, present and prove a kind of weighted equivalence theorem of pointwise approximation. The theorem is not only applicable to bounded continuous functions, but also to unbounded ones, and it is applicable to a large class of positive linear operators.
出处
《湖北大学学报(自然科学版)》
CAS
2000年第2期113-116,共4页
Journal of Hubei University:Natural Science
基金
湖北省自然科学基金
关键词
加权逼近
等价定理
无界连续函数
点态逼近
weighted approximation
equivalence theorem
unbounded continuous function
pointwise approximation