期刊文献+

如何高效制备生殖系传递的嵌合体小鼠 被引量:1

Efficiently Production of Chimeric Mice Competent for Germline Transmitted
原文传递
导出
摘要 目前,嵌合体技术已成为胚胎干细胞(ES细胞)和诱导多能性干细胞(iPS细胞)研究不可或缺的一部分,嵌合体小鼠模型主要用于基因功能、调控机制、致病机理等各方面的研究。要安全可靠地进行ES细胞和iPS细胞的各种应用性研究,首先需要验证细胞在体内向各种组织定向分化的能力,特别是生殖系传递的能力。而高效制备多能性干细胞生殖系传递的嵌合体小鼠,需要在分子水平、细胞水平、动物个体水平以及制备方法等各方面全面综合地分析考虑,才能达到实验设计的最优化。制备嵌合体小鼠主要有注射法和聚集法2种方法,各有利弊,在整个制备过程中,需要考虑不同发育阶段以及不同小鼠品系胚胎的分化潜能、选用远交系和杂交系的胚胎作为受体,同时要考虑ES细胞的遗传背景,选择低代次的远交系和杂交系的ES细胞或者iPS细胞,以及优选KSR培养体系。对于操作者,需根据实际情况,全方位地综合考虑,从而制定出合理的操作方案。 Chimeric mice capable of germline transmission are important tools for studying gene function, mechanisms of development, and disease pathogenesis. Chimeras are indispensable for research on embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). When planning an experiment that includes production of chimeric mice, several factors should be considered that may have an impact on the molecular, cellular, or tissue/ organ levels. Recipient embryos at different stages of development have different efficiencies for donor cell engraftment and survival, leading to a wide range of levels of chimerism. Capability for tetraploid complementation is key, but so are other recipient embryo factors such as mitochondrial quantity and quality. Whether the recipient strain is inbred or out-breeding needs to also be considered. In the donor stem cells, genetic background is critically important, as are the cell culture conditions such as the KSR system used to engineer and expand donor cells before transplantation. The injection and aggregation methods are the two primary methods for producing chimeras, and both have advantages and disadvantages. This review is intended to assist investigators with a comprehensive assessment of what factors will be most important for meeting their specific goals in a chimeric mouse project.
出处 《生殖与避孕》 CAS CSCD 2012年第10期685-689,共5页 Reproduction and Contraception
基金 国家"863"计划(2011AA020116) 国家杰出青年年科学基金(81125003) 上海市重点学科建设项目(S30201) 国家"973"计划(2010CB945200) 卫生部国家临床重点专科建设项目
关键词 胚胎干细胞(ES细胞) 嵌合体 生殖系传递 诱导性多能性干细胞(iPS细胞) chimera germline transmission tetroploid complementation embryonic stem cells (ESCs) induced pluripotent stem cells (iPSCs)
  • 相关文献

参考文献26

  • 1Tarkowski AK. Mouse chimaeras developed from fused eggs. Nature, 1961, 190:857-60.
  • 2Fujikawa-Yamamoto K. An hypothesis about genome struc- tures in mammalian polyploid cells based on a new concept that genome is fractal of six hierarchies. Med Hypothesis, 2006, 66(2):337-44.
  • 3Yagi T, Tokunaga T, Furuta Y, et al. A novel ES cell line, TT2, with high germline- differentiating potency. Anal Biochem, 1993, 214(1):70-6.
  • 4Goto Y, SugiyamaF, Tanimoto K, et al. Evaluationofcoculture aggregation with TT2 cells for production ofgermline chimera. Lab Anim Sci, 1995, 45(5):601-3.
  • 5Piliszek A, Modlifiski JA, Pysniak K, et al. Foetal fibroblasts introduced to cleaving mouse embryos contribute to full- term development. Reproduction, 2007, 133(1):207-18.
  • 6van Blerkom J, Davis P, Alexander S. Differential mitochon- drial distribution in human pronuclear embryos leads to dis- proportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod, 2000, 15(12):2621-33.
  • 7van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod Biomed, 2008, 16(4):553-69.
  • 8Nagy A, Rossant J, Nagy R, et al. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. PNAS, 1993, 90(18):8424-8.
  • 9Wang ZQ, Kiefer F, Urbanek P, et al. Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocvst injection. Mech Dev, 199% 62(2): 137-45.
  • 10Wang Z, Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol, 2004, 275(2): 192- 201.

二级参考文献20

  • 1Nagy A,Gertsenstein M,Vintersten K,et al.[M].New York:Cold Sring Harbor Laboratory Press,2003:359-398.
  • 2Ueda O,Jishage K,Kamada N,et al.[J].Exp Anim,1995,44 (3):205-210.
  • 3Kubiak JZ,Tarkowski AK.[J].Exp Cell Res,1985,157(2):561-566.
  • 4Kaufman MH,Webb S.[J].Development,1990,110(4):1121-1132.
  • 5Wang ZQ,Kiefer F,Urbanek P,et al.[J].Mech Dev,1997,62 (2):137-145.
  • 6Wakayama T,Perry ACF,Zuccotti M,et al.[J].Nature,1998,394(6691):369-374.
  • 7Wakayama T,Rodriguez I,Perry AC,et al.[J].Proc Natl Acad Sci USA,1999,96(21):14984-14989.
  • 8Wakayama T,Yanagimachi R.[J].Nature Genet,1999,22(2):127-128.
  • 9Dietrich W,Katz H,Lincoln SE,et al.[J].Genetics,1992,131 (2):423-447.
  • 10Li XY,Yu YS,Wei W,et al.[J].Mol Reprod Dev,2005,71 (2):154-158.

共引文献3

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部