期刊文献+

电子载体对丁醇发酵的影响 被引量:3

Effects of electronic carrier on butanol fermentation by Clostridium acetobutylicum
下载PDF
导出
摘要 研究在培养基中加入不同电子载体对丁醇发酵的影响。结果表明:添加微量的苄基紫精可以促进丁醇的产生,同时可强烈抑制丙酮的合成,丁醇体积分数由66.92%提高到82.35%。苄基紫精可促进菌株快速进入产溶剂期,发酵周期明显缩短,丁醇生产强度显著提高。7%玉米培养基中加入40 mg/L苄基紫精,丁醇产量最高达16.10 g/L,生产强度为0.37 g/(L.h),分别较对照提高10.96%和60.87%。在初始丁醇体积分数较低的条件下,苄基紫精对丁醇合成的促进作用更明显。 The effects of different electronic carriers on butanol fermentation by Clostridium acetobutylicum were investigated. Results showed that benzyl viologen on low concentrations could promote butanol production and reduce acetone production, and the butanol ratio increased from 66. 92% to 82.35%. Using benzyl viologen, C. acetobutylicum could enter solventogenesis rapidly and the fermentation period was shortened, thus butanol productivity was markedly increased. C. acetobutylicum produced 16. 10 g/L butanol with a productivity of 0. 37 g,/( L· h) when grown in corn medium containing 40 mg/L benzyl viologen. Meanwhile, the butanol production and the productivity were 10. 96% and 60. 87%, higher than those of control. The promotion of the benzyl viologen on the butanol production was more active when the butanol ratio was lower.
出处 《生物加工过程》 CAS CSCD 2012年第5期1-6,共6页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金资助项目(21176105) 中央高校基本科研业务费专项资金资助项目(JUSRP111A24)
关键词 丁醇 电子载体 苄基紫精 butanol electronic carrier benzyl viologen
  • 相关文献

参考文献1

二级参考文献21

  • 1刘颜,袁若,柴雅琴,李群芳,唐点平,戴建远,钟霞.聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器[J].分析测试学报,2005,24(4):24-27. 被引量:12
  • 2赫春香,俞爱民,韩吉林,陈洪渊.天青I修饰电极的电化学性质及对血红蛋白的电催化还原[J].高等学校化学学报,1996,17(12):1847-1850. 被引量:15
  • 3Y.XIAO,H.-X.JU,H.-Y.CHEN.A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly (thionine)film on a monolayer modified electrode[J].Analytica Chimica Acta,1999,391:299-306.
  • 4XU CHEN,JINGZHONG ZHANG,BINGQUAN WANG.Hydrogen peroxide biosensor based on solgel-derived glasses doped with Eastman AQ polymer[J].Analytica Chimica Acta,2001,434:255-260.
  • 5RU YANG,CHUANMIN RUAN,WEILIN DAI,et al.Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine)[J].Electrochimica Acta.1999,44:1585-1596.
  • 6FENG YANG,CHUANMIN RUAN,JINSUO XU,et al.An amperometric biosensor using toluidine blue as an electron transfer mediator intercalated in á-zirconium phosphate-modified horseradish peroxidase immobilization matrix[J].Fresenius J Anal Chem.1998,361:115-118.
  • 7G.P.SHUMAKOVICH,L.G.DUBOVA,N.A.BYZOVA.et al.Efficient artificial electron acceptors for monoamino oxidase in bioelectrooxidation of monoamines:Phenothiazine dyes[J].Russian Journal of Electrochemistry.2004,40(9):1 111-1 119.
  • 8IGOR VOSTIAR,JAN TKAC,ERNEST STURDIK,et al.Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe[J].Bioelectrochemistry 2002,56:113-115.
  • 9SCHLERETH,SCHUHMAN,SCHMID.Spectroelectrochemical characterization of ultra-thin films formed by electropolymerization of phenothiazine derivatives on transparent goldelectrodes[J].J Electroanal Chem,1995,318(1-2):63-70.
  • 10ARKADY A.KARYAKIN,YULIA N.IVANOVA,ELENA E.KARYAKINA.Equilibrium (NAD+/N ADH) potential on poly (Neutral Red) modi? ed electrode[J].Electrochemistry Communications,2003,5:677-680.

同被引文献26

  • 1刘仲汇,史建国,朱思荣,扬艳,高广恒,李雪梅.尾气在线检测分析在发酵中的应用[J].发酵科技通讯,2012,41(4):32-35. 被引量:8
  • 2N1GAM P S, SINGH A. Production of liquid biofuels from renewable resources[J]. Prog. Energ. Combust, 2011, 37 (1): 52-68.
  • 3XUE C, ZHAO X Q, LIU C G, et al. Prospective and development of butanol as an advanced biofuel[J]. Biotechnol. Adv., 2013, 31:1575-1584.
  • 4DI3RRE P. Biobutanoh an attractive biofuel[J]. Biotechnol. J., 2007, 2: 1525-1534.
  • 5XUE C, ZHAO J B, LIU F F, et al. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery[J] Bioresour. Technol., 2013, 135: 396-402.
  • 6LEE S Y, PARK J H, JANG S H, et al. Fermentative butanol production by Clostridia[J]. Bioteclmology and Bioengineering, 2008, 101 (2): 209-228.
  • 7PETITDEMANGE H, CHERRIER C, RAVAL G, et al. Regulation of the NADH and NADPH-ferredoxin oxidoreductases in Clostridia of the butyric group[J]. Biochimica et Biophysica Acta (BBA): General Subjects, 1976, 421 (2): 334-347.
  • 8RAO G, MUTHARASAN R. Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes[J]. Applied and Environmental Microbiology, 1987, 53 (6): 1232- 1235.
  • 9XUE C, ZHAO XQ, BAI FW. Effect of the size of yeast floes and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions[J]. Biotechol. Bioeng., 2010, 105: 935-944.
  • 10LU C C, ZHAO J B, YANG S T, et al. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping[J]. Bioresource Technology, 2012, 104: 380-387.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部