期刊文献+

适合渗透海床上的Boussinesq水波数学模型 被引量:3

A Boussinesq model for water waves over permeable seabed
下载PDF
导出
摘要 为了数值研究波浪在渗透海床上的传播特性,基于近似到二阶完全非线性的高阶Boussinesq水波方程,通过引入考虑可渗海床影响的动量方程,将方程拓展到可适用渗透海床情况。对该方程常水深情况下进行了理论分析,并与解析解比较,讨论了方程的相速度及衰减率。在非交错网格下离散该方程,建立了预报—校正的有限差分数值模型。利用数值模型模拟了渗透地形上的波浪传播变形,并与相关实验结果进行了比较,实验结果与数值结果吻合较好,说明这种拓展Boussinesq水波方程至渗透海床情况是合适的。 In order to study the wave propagation over permeable seabed numerically, Dasel on Boussinesq's equations for water waves, a resistance equation was introduced, and thus the equations were applicable to permeable seabed. The new equations were analyzed theoretically for constant wa ter, and the phase velocity and damping rate were compared with the analytical solutions. In non staggered grids, a predictioncorrection scheme was applied to the onedimensional equations. A third order AdamsBashforth scheme was adopted in prediction stage and a fourth order AdamsMoul ton scheme was adopted in correction stage. Numerical computation was carried out upon wave prop agation over a submerged porous topography, and the computed results we~ compared with the ex perimental results. The agreement is relatively good, which shows that the present method is feasible to improve original Boussinesq's model for permeable seabeds.
出处 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期870-875,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51009018) 海岸和近海工程国家重点实验室开放基金资助项目(LP1105)
关键词 BOUSSINESQ方程 渗透海床 色散性 波浪 Boussinesq's equations permeable seabed dispersion waves
  • 相关文献

参考文献14

  • 1KIRBYJ T. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced cur- rents[ M]//LANKHAN V C. Advances in coastal engineering. New York: Elsevier Science, 2002: 1-41.
  • 2刘忠波,邹志利,孙昭晨.加强的适合复杂地形的水波方程及其一维数值模型验证[J].海洋学报,2008,30(3):117-125. 被引量:10
  • 3张殿新,陶建华.一种改善了非线性和色散性的Boussinesq方程模型[J].应用数学和力学,2008,29(7):813-824. 被引量:4
  • 4ZOU Z L, FANG K Z. Ahemative forms of higher order Boussinesq equations: Derivations and validations [ J ]. Coastal Engineering, 2008,55 (6) :506-521.
  • 5ZOU Z L, LIU Z B, FANG K Z. Further improvements to higher-order Boussinesq equations: Bragg reflection[ J]. Coastal Engineering, 2009, 56(5-6) : 672-687.
  • 6MADSEN P A, FUHRMAN D R. High-order Boussinesq-type modeling of nonlinear wave phenomena in deep and shallow water[ M ]//MA QW. Advances in numerical simulation of nonlinear water waves. Singapore: World Scientific Publishing Co. Pte. Ltd. , 2010:245-285.
  • 7ZOU Z L, FANG K Z, LIU Z B. Inter-comparisons of different forms of higher-order Boussinesq equations [ M ]//MA Q W. Advances in numerical simulation of nonlinear water waves. Singapore: World Scientific Publishing Co. Pte. Ltd. , 2010 : 286-322.
  • 8刘忠波,房克照,邹志利.近似到O(μ~2)阶完全非线性的Boussinesq水波方程[J].哈尔滨工程大学学报,2012,33(5):556-561. 被引量:6
  • 9CRUZ E C, CHEN Q. Numerical modeling of nonlinear water waves over heterogeneous porous beds[J]. Ocean Engineer- ing, 2007, 34(8-9): 1303-1321.
  • 10HSIAOS C, LIU P L-F, CHEN Y Z. Nonlinear water waves propagating over a permeable bed [ J ]. Proc R Soc Lond A, 2002, 458 : 1291-1322.

二级参考文献46

  • 1刘忠波,张日向,姜萌.简便推导改进Boussinesq方程的一种方法[J].大连理工大学学报,2005,45(1):118-120. 被引量:5
  • 2PEREGRINE D H, Long waves on a beach [J]. Journal of Fluid Mechanics, 1967, 27(4) : 815-827.
  • 3MADSEN P A, SφRENSEN O R. A new form of the Boussinesq equations with improved linear dispersion eharaeteristiestPart 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1992, 18: 183-204.
  • 4NWOGU O. An alternative form of the Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119(6):618-638.
  • 5SCHAFFER H A, MADSEN P A. Further enhancements of Boussinesq-type equations[J]. Coastal Engineering, 1995, 26:1-14.
  • 6MADSEN P A, SCHAFFER H A. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis [J]. Philosophical Transations of Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1998, 356: 3123-3184.
  • 7MADSEN P A, BINGHAM H B, LIU Hua. A new method for fully nonlinear waves from shallow water to deep water [J]. Journal of Fluid Mechanics, 2002, 462: 1-30.
  • 8WEI G E, KIRBY J T. A time-dependent numerical code for extended Boussinesq equations[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121: 251-261.
  • 9GOBBI M F, KIRBY J T. Wave evolution over submerged sills: tests of a high-order Boussinesq model[J]. Coastal Engineering, 1999, 37: 57-96.
  • 10KIRBY J T, WEI G E, CHEN Qin, et, al, FUNWAVE 1.0: fully nonlinear Boussinesq wave model. Documentation and User's Manual[M]// Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, 1998, 80,

共引文献16

同被引文献42

  • 1QI,Peng(齐鹏),WANG,Yongxue(王永学).Hydraulic Modeling of A Curtain-Walled Dissipater by the Coupling of RANS and Boussinesq Equations[J].China Ocean Engineering,2002,17(2):201-210. 被引量:5
  • 2李绍武,李春颖,谷汉斌,时钟.一种改进的近岸波浪破碎数值模型[J].水科学进展,2005,16(1):36-41. 被引量:13
  • 3宋金宝.A set of Boussinesq-type equations for interfacial internal waves in two-layer stratified fluid[J].Chinese Physics B,2006,15(12):2796-2803. 被引量:3
  • 4MADSEN P A, SORENSEN O R. A new form of the Boussinesq equations with improved linear dispersion characteristics : Part 2. A slowly-varying bathymetry [ J ]. Coastal Engineering, 1992,18 : 183-204.
  • 5BEJI S, NADAOKA K. A formal derivation and numerical model of the improved Boussinesq equations for varying depth [J]. Ocean Engineering, 1996, 23: 691-704.
  • 6WEI G, KIRBY J T, GRILLI S T, et. al. A full nonlinear Boussinesq model for surface waves. I: Highly nonlinear, un- steady waves [J].Journal of Fluid Mechanics, 1995, 294: 71-92.
  • 7AGNON Y, MADSEN P A, SCHAFFER H A. A new approach to high order Boussinesq models [ J]. Journal of Fluid Me- chanics, 1999,399:319-333.
  • 8MADSEN P A, BINGHAM H B, LIU H. A new method for fully nonlinear waves from shallow water to deep water [ J ]. Journal of Fluid Mechanics,2002, 462 : 1-30.
  • 9LIU Z B, SUN Z C. Two sets of higher-order Boussiesq-type equations for water waves [ J ]. Ocean Engineering, 2005, 32 : 1296-1310.
  • 10KIM G, LEE C, SUH K D, Extended Boussinesq equations for rapidly varying topography [J]. Ocean Engineering, 2009, 36: 842-851.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部