期刊文献+

杂交算子的配对与协同性 被引量:1

Pairing of crossovers and its synergy
下载PDF
导出
摘要 在遗传算法中两个或多个杂交算子的适当组合能够产生协同效应,从而可以提高算法的搜索性能。为分析其机理并提出协同组合方法,对两个杂交算子的协同组合问题进行了研究。结果表明,组合中算子对群体多样性的调节和利用是产生协同效应的关键。进而提出了两个杂交算子协同组合的方法,即组合中要有能使群体收敛快的和收敛慢的算子,以调节群体多样性;要有求解质量较好的算子,以利用群体多样性求出更好的解;通过调整两个算子的比例可调节群体收敛速度以及平衡好算子的求解质量和收敛速度之间的关系,使得算子组合形成协同求解能力。为获得更好的协同效果,还要考虑算子组合的问题相关性。详尽的数值实验结果表明了分析的正确性和所提出的协同组合方法的有效性。 In genetic algorithms careful combination of two or more different crossovers can produce synergy, thus improving genetic algorithm performance. To analyse the mechanism and provide a method of synergic combination of crossovers, we examine the synergie combination of two cross overs. It is shown that the key for the combination to produce synergy lies in the adjustment and us age of the population diversity of the crossovers. Thereby the method of synergically combining two crossovers is proposed. The combination should be composed of two crossovers, one of which makes the population converging quickly while the other slowly, so as to control the diversity of the popula tion. Of cause it should contain a crossover with good solution quality which makes use of the popu lation diversity to produce a better solution. Meanwhile, by adjusting the proportion of the two cross overs, the convergence rate of the population can be controlled while the relationship can be well balanced between the solution quality of the crossovers and the convergence rate of the population, enabling the combination to form a synergic solution capability. In addition, to obtain better synergy results the correlation between the crossover combination and the problem to be solved should be considered. Detailed numeric experimental results confirm the correctness of the analysis and the ef fectiveness of the proposed method of synergic combination.
出处 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期972-979,共8页 Journal of Guangxi University(Natural Science Edition)
基金 广西自然科学基金资助项目(桂科自0991060)
关键词 遗传算法 杂交算子 协同 genetic algorithm crossovers synergy
  • 相关文献

参考文献14

  • 1张军英,许进,保铮.遗传交叉运算的可达性研究[J].自动化学报,2002,28(1):120-125. 被引量:16
  • 2任庆生,叶中行,曾进,戚飞虎.交叉算子的搜索能力[J].计算机研究与发展,1999,36(11):1317-1322. 被引量:17
  • 3张应辉,曾庆华,王志伟.遗传算法的混合算子策略[J].计算机科学,2007,34(4):222-224. 被引量:15
  • 4SCHAFFER J D, MORISHIMA A. An adaptive crossover distribution mechanism for genetic algorithms [ C ]//GREFEN- STETrE J J. Proceedings of the Second International Conference on Genetic Algorithms. Cambridge, MA, USA : Lawrence Erlbaum Associates, 1987:36-40.
  • 5陈皓,崔杜武,李雪,韦宏利.交叉点规模的优化与交叉算子性能的改进[J].软件学报,2009,20(4):890-901. 被引量:8
  • 6SPEARS W M. Adapting crossover in evolutionary algorithms [ C ]// MCDONNELL J R, REYNOLDS R G, FOGEL D B. Proceedings of the Fourth Annual Conference on Evolutionary Programming. San Diego, California: MIT Press, 1995: 367-386.
  • 7EIBEN A E, SPRINKHUIZEN-KUYPER I G, THIJSSEN B A. Competing crossovers in an adaptive GA framework[ C ]// Proceedings of the IEEE Conference on Evolutionary Computation. Anchorage, AK, USA: IEEE Service Center, 1998: 787-792.
  • 8HONG I, KAHNG A B, MOON B R. Exploiting synergies of multiple crossovers: initial studies [ C ]//Proceedings of the IEEE Conference on Evolutionary Computation. Perth, Australia:IEEE Service Center, 1995: 245-250.
  • 9YOON H S, MOON B R. An empirical study on the synergy of multiple crossover operators [ J ]. IEEE Transaction on Evo- lutionary Computation, 2002,6 (2) :212-223.
  • 10周永华,张旭,毛宗源.采用不可微精确罚函数的约束优化演化算法[J].小型微型计算机系统,2004,25(8):1464-1467. 被引量:8

二级参考文献45

共引文献238

同被引文献15

  • 1张应辉,曾庆华,王志伟.遗传算法的混合算子策略[J].计算机科学,2007,34(4):222-224. 被引量:15
  • 2HERRERA F, LOZANO M, SANCHEZ A M. A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study [ J ]. International Journal of Intelligent Systems, 2003, 18 (3) : 309-338.
  • 3GARCIA-MARTINEZ C, LOZANO M, HERRERA F, et al. Global and local real-coded genetic algorithms based on par- ent-centric crossover operators [ J ]. European Journal of Operational Research, 2008, 185 (3) : 1088-1113.
  • 4ALBERTO I, MATEO P M. A crossover operator that uses Pareto optimality in its definition [J]. TOP, 2011, 19( 1 ) : 67 -92.
  • 5KAYA M. The effects of two new crossover operators on genetic algorithm performance [ J ]. Applied Soft Computing, 2011, 11(1) : 881-890.
  • 6SANCHEZ A M, LOZANO M, VILLAR P, et al. Hybrid crossover operators with multiple descendents for real-coded ge-netie algorithms: combining neighborhood-based crossover operators [ J ]. International Journal of Intelligent Systems, 2009, 24 (5) : 540 - 567.
  • 7SPEARS W M. Adapting crossover in evolutionary algorithms [ C]//MCDONNELL J R, REYNOLDS R G, FOGEL D B. Proceedings of the Fourth Annual Conference on Evolutionary Programming. San Diego, California: MIT Press, 1995: 367-386.
  • 8EIBEN A E, SPRINKHUIZEN-KUYPER I G, THIJSSEN B A. Competing crossovers in an adaptive GA framework[ C ]// Proceedings of the IEEE Conference on Evolutionary Computation. Anchorage, AK, USA: IEEE Service Center, 1998: 787-792.
  • 9HERRERA F, LOZANO M. Gradual distributed real-coded genetic algorithms [ J ]. IEEE Transaction on Evolutionary Computation, 2000, 4( 1 ) : 43-63.
  • 10HERRERA F, LOZANO M, SANCHEZ A M. Hybrid crossover operators for real-coded genetic algorithms : an experimental study [ J ]. Soft Computing, 2005, 9 (4) : 280-298.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部