期刊文献+

芳香族化合物的快速生物降解性QSBR研究 被引量:5

QSBR on ready biodegradability of aromatic compounds
下载PDF
导出
摘要 分别采用线性基团贡献、支持向量机与人工神经网络法对芳香族化合物的快速生物降解性进行定量结构-生物降解关系(QSBR)研究,得到不同基团对芳香族化合物快速生物降解性的贡献值。线性基团贡献法对于训练组和测试组的预测正确率是80.3%和79.2%,总的预测正确率达80.1%;支持向量机的预测正确率分别是84.8%、85.4%和84.9%,而人工神经网络法的预测正确率分别是97.7%、81.2%和95.2%。结果表明,这3种方法的预测效果均较好。 The quantitative structure-biodegradability relationship(QSBR) studies were performed with the ready biodegradability of aromatic compounds by the linear group contribution method,artificial neural network and support vector machine approach based on principal component analysis.The contributions of various groups to ready biodegradation were obtained.The prediction accuracy of the linear group contribution method was 80.3% for the training set,79.2% for the test set,and 80.1% for all compounds.With the support vector machine approach,it was 84.8%,85.4% and 84.9%,respectively;with the neural network approach,it was 97.7%,81.2% and 95.2%,respectively.Results showed that three methods had well prediction results for the training set and the test set.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2012年第5期38-43,共6页 Journal of Nanjing Tech University(Natural Science Edition)
基金 环保公益性行业科研专项项目(200809102 200909086)
关键词 芳香族化合物 快速生物降解 基团贡献 神经网络 支持向量机 aromatic compounds ready biodegradation group conttribution neural network support vector machine
  • 相关文献

参考文献14

  • 1I-Ienery H T, Rakesh G. Prediction of biodegradation kinetics u- sing a nonlinear group contribution method [J]. Environmental Toxicology and Chemistry, 1993,12:251 - 260.
  • 2陈刚.定量结构与生物降解性能关系的研究及应用[J].武汉理工大学学报(交通科学与工程版),2004,28(3):459-462. 被引量:9
  • 3戴树桂,宋文华,庄源益,颜慧,陈晓军.偶氮染料定量结构-生物降解关系(QSBR)研究[J].环境化学,1998,17(2):115-119. 被引量:15
  • 4Zitko V. Prediction of biodegradability of organic chemicals by an artificial neural network[J].Chemosphere, 1991, 23 ( 3 ) : 305 -312.
  • 5Yang Hongwei, Jiang Zhanpeng, Shi Shaoqi. Anaerobic bio-de- gradability of aliphatic compounds and their quantitative structurebiodegradability relationship [ J ]. Science of the Total Environ- ment ,2004,322 ( 1/2/3 ) :209 - 219.
  • 6Jiri D, Wayne T S. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols[J]. Chemosphere, 1997,34(2) :429 -446.
  • 7Kompare B. Estimating environmental pollution by xenobi-otic chemicals using QSAR (QSBR) models based on artificial intelli- gence [ J ]. Water Science and Technology, 1998,37 ( 8 ) :9 - 18.
  • 8Cuissart B,Touffet F, Cr6milleux B,et al. The maximum common substructure as a molecular depiction in a supervised classifica- tion context:experiments in quantitative structure/biodegradabili- ty relationships [J].Journal of Chemical Information and Com- puter Science,2002,42 (5) : 1043 - 1052.
  • 9梅虎,梁桂兆,周原,李志良.支持向量机用于定量构效关系建模的研究[J].科学通报,2005,50(16):1703-1708. 被引量:28
  • 10Yao Xiaojun, Liu Huanxiang, Zhang Ruisheng, et al. QSAR and classification study of 1,4-dihydropyridine calcium channel an- tagonists based on least squares support vector machines [ J ]. Mo- lecular Pharmaceutics ,2005,2 (5) :348 - 356.

二级参考文献41

  • 1刘厚田,杜晓明,刘金齐,邹晓燕,柳若安.藻菌系统降解偶氮染料的机理研究[J].环境科学学报,1993,13(3):332-338. 被引量:48
  • 2H H Tabak, R Govind. Environ. Toxicol. Chem., 1993, 12:251-260.
  • 3P Pitter, J Chudoba. Biodegradability of Organic Substances in the Aquatic Environment. Boca Baton:Florida, CRC Press, 1990.
  • 4B Cambon, J Devillers. Quant, Struct. -Act. Relat., 1993, 12:49-.56.
  • 5R C ovind, L Lei. Ed. by W J G M Peijinenburg, J Damborky. Biodegradation Prediction. Amsterdam: Kluwer Ar-m-c Press, 1996:115 - 138.
  • 6M Lexander, Science, 1980, 211:132 - 138.
  • 7J C De, arden, SAR and QSAR in Environmental Research, 1996, 5:17 - 26.
  • 8韩朔暌,环境化学,1992年,11卷,4期,30页
  • 9周继成,人工神经网络,1992年,52,53页
  • 10许禄,化学计量学方法,1995年

共引文献72

同被引文献51

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部