摘要
图的优美性是图的重要研究内容之一,有广泛的应用背景.1991年,马克杰提出猜想:完备二分图km,n的冠I(km,n)是k—优美图,其中m,n,k是任意正整数且m≤n.当m=2,3,4,5或k>(m-2)n;m=1,2;或k≥(m-2)(n-1)的情形,在文献〔6,7〕中证明了猜想的正确性.本文利用构造方法也给出了对于任意正整数m,n,k时,当m<n,m≥6,n≥m2-3m+2/2时,完备二分图km,n的冠I(km,n)的另一种k—优美标号.
The gracefulness of graphs which having widely applications is an important property of graphs. Makejie guessed that the coronal I(Km,n) of any complete bipartite graph Km,n is a K-graceful graph,where m,n,k are any positive integers and m ≤ n. In this paper, we proof the coronal I(Km,n ) of any complete 2 bipartite graph Km,n is a K-graceful Graph when m ≥6,n ≥(m^2-3m+2)/2 m〈n and m,n,k are any positive integers. Furthermore,the coronal I(Km,n ) of any complete bipartite graph Km,n is not K-graceful graph. The result enriches the graceful theory of graphs.
出处
《内蒙古民族大学学报(自然科学版)》
2012年第2期129-131,139,共4页
Journal of Inner Mongolia Minzu University:Natural Sciences
基金
内蒙古自治区高等学校科学项目(NJZY11198)
关键词
完备二分图
K-优美图
冠
构造方法
Complete bipartite graphs
k-graceful graph
Crown
Construction method