期刊文献+

正齐次模糊数值函数的欧拉公式及其应用 被引量:2

Euler-identity of Homogeneous Fuzzy-valued Function and its application
下载PDF
导出
摘要 本文首先给出了正齐次可微模糊数值函数的欧拉公式;其次,给出了凸模糊数值函数的次可微性概念,并在次可微条件下给出了正齐次凸模糊数值函数的广义欧拉公式;最后,作为所获理论的应用,讨论了齐次模糊规划问题,得到了正齐次模糊规划问题解的必要条件. In this paper, firstly, we discussed Euler-identity of differentiable positively homogeneous fuzzy-valued functions Secondly, we given the definition of sub-differential of convex fuzzy-valued functions, and given the generalized Euler-identity of positively homogeneous fuzzy-valued functions under the sub-differential conditions Finally, as the application of the theory, we discussed the positively homogeneous fuzzy programming problems, and obtained the necessary condition of solution for the positively homogeneous fuzzy programming problems.
出处 《内蒙古民族大学学报(自然科学版)》 2012年第2期135-139,共5页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古自然科学基金资助项目(2010MS0119)
关键词 正齐次模糊数值函数 欧拉公式 梯度 次微分 模糊规划 Positively homogeneous fuzzy-valued functions Euler-identity Gradient Sub-differential Fuzzyprogramming
  • 相关文献

参考文献6

  • 1B Lasserre,J B Hiriart.Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions [ J ].J Optim Theory Appl, 2002,112:31-51.
  • 2Fuchun Yang,Qinghai He.Expressions for Subdifferential and Optimization Problems Defined by Nonsmooth Homogeneous Functions [ J ].Nonlinear Analysis, 2006,65:854-863.
  • 3Fuchun Yang,Zhou Wei.Generalized Euler identity for sub-differentials of homogeneous functions and applications[J]. Math Anal Appl,2008,337:516-523.
  • 4巩增泰,李红霞.模糊数值函数的微分和梯度及其应用[J].高校应用数学学报(A辑),2010(2):229-238. 被引量:4
  • 5Goetschel Jr R,Voxman W.Elementary fuzzy catculus[J].Fuzzy Sets and Systems,1986,18:31-43.
  • 6吴从圻 马明.模糊分析学基础[M].北京:国防工业出版社,1991.87-94.

二级参考文献13

  • 1Goetschel Jr R,Voxman W.Elementary fuzzy calculus[J].Fuzzy Sets and Systems,1986,18:31-43.
  • 2Puri M L,Ralescu D A.Differentials of fuzzy functious[J].Journal of Mathematical Analysis and Applications,1983,91:552-558.
  • 3Buckley J J,Feuring T.Introduction to fuzzy partial differential equations[J].Fuzzy Sets and Systems,1999,105:247-248.
  • 4Buckley J J,Feuring T.Fuzzy differential equations[J].Fuzzy Sets and Systems,2000,110:43-54.
  • 5Wang Guixiang,Wu Congxin.Directional derivatives and subdifferential of convex fuzzy mappings and application in covex fuzzy programming[J].Fuzzy Sets and Systems,2003,138:559-591.
  • 6Li Hongxing,Yen V C,Lee E S.Factor space theory in fuzzy information processingcomposition of states of factors and multifactorial decision making[J].Computers and Mathematics with Applications,2000,39:245-265.
  • 7Wu Hsienchung.Duality theorems in fuzzy mathematical programming problems based on the concept of necessity[J].Fuzzy Sets and Systems,2003,139:363-377.
  • 8Liu Yankui,Liu Baoding.Fuzzy random programming with equilibrium chance constraints[J].Information Sciences,2005,170:363-395.
  • 9Wu Hsienchung.Duality theorems and saddle point optimality conditions in fuzzy nonlinearprogramming problems based on different solution concepts[J].Fuzzy Sets and Systems,2007,158:1588-1607.
  • 10Panigrahi M,Panda G,Nanda S.Convex fuzzy mapping with differentiability and its application in fuzzy optimization[J].European Journal of Operational Reaserch,2008,185:47-62.

共引文献13

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部