期刊文献+

绿色荧光蛋白表达载体pXS75-GFP的构建及在嗜热四膜虫中的应用

Construction of Green Fluorescent Protein Expression Vector pXS75-GFP and Application in Tetrahymena thermophila
原文传递
导出
摘要 为获得能够用于构建嗜热四膜虫蛋白定位的载体,该研究将GFP基因与镉(Cd2+)诱导的四膜虫金属硫蛋白基因(MTT1)启动子序列和终止子序列融合,获得表达载体pXS75-GFP。通过同源重组和抗性筛选,pXS75-GFP载体携带的目的基因整合入四膜虫MTT1位点,在Cd2+诱导下实现GFP融合蛋白的可控表达。将α-tubulin基因ATU1克隆入pXS75-GFP中,重组质粒pXS75-GFP-ATU1通过基因枪转化入四膜虫细胞,在巴龙霉素筛选下获得稳定的α-tubulin-GFP过表达细胞株。激光共聚焦显微镜观察α-tubulin-GFP的定位,结果显示,α-tubulin-GFP融合蛋白在四膜虫细胞中表达并分布于皮层上,表明pXS75-GFP载体可用于嗜热四膜虫功能蛋白的定位分析。 To construct a vector for studying the localization of protein in Tetrahymena thermophila, GFP expression vector pXS75-GFP was constructed by ligating GFP with Cd2+inducible metallothionein (MTT1) promoter and terminator sequences. The target gene-GFP fusion gene can integrate into the MTT1 locus through homologous recombination and resistance screening. Expression of the target protein in-fusion with the α-terminal GFP tag was controllable by Cd2+. The recombinant plasmid pXS75-GFP-ATU1 was constructed and biolistically transformed into Tetrahymena. The expression of α-tubulin-GFP was analyzed by Western blot. Confocal microscopy showed that α-tubulin-GFP localized at cortex in living and fixed Tetrahymena cells. The results revealed that pXS75-GFP can be used for studying the subcellular localization of proteins in Tetrahymena thermophila.
作者 梁海霞 王伟
出处 《中国细胞生物学学报》 CAS CSCD 北大核心 2012年第10期1010-1016,共7页 Chinese Journal of Cell Biology
基金 国家自然科学基金(No.30770295 No.31072000) 教育部科学技术研究重点项目(No.201026)资助项目~~
关键词 绿色荧光蛋白 载体构建 蛋白定位 嗜热四膜虫 green fluorescent protein construction of vectors protein localization Tetrahymena thermophila
  • 相关文献

参考文献17

  • 1Turkewitz AP, Orias E, Kapler G. Functional genomics: the coming of age for Tetrahymena thermophila. Trends Genet 2002; 18(1): 35-40.
  • 2Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR,et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2006; 4(9): e286.
  • 3Miao W, Xiong J, Bowen J, Wang W, Liu Y, Braguinets O, et aL Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One 2009; 4(2): e4429.
  • 4Xiong J, Yuan D, Fillingham JS, Garg J, Lu X, Chang Y, et al. Gene network landscape of the ciliate Tetrahymena thermophila. PLoS One 2011; 6(5): e20124.
  • 5Mochizuki K. High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene 2008; 425(1/2): 79-83.
  • 6Kataoka K, Schoeberl UE, Mochizuki K. Modules for C-terminal epitope tagging of Tetrahymena genes. J Microbiol Methods 2010; 82(3): 342-6.
  • 7Gaertig J, Gu L, Hai B, Gorovsky MA. High frequency vector- mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res 1994; 22(24): 5391-8.
  • 8Gaertig J, Kapler G. Transient and stable DNA transformation of Tetrahymena thermophila by electroporation. Methods Cell Biol 2000; 62: 485-500.
  • 9Bright LJ, Kambesis N, Nelson SB, Jeong B, Turkewitz AP. Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet 2010; 6 (10): e1001155.
  • 10Malone CD, Falkowska KA, Li AY, Galanti SE, Kanuru RC, LaMont EG, et al. Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Eukaryot Cell 2008; 7(9): 1487-99.

二级参考文献24

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部