期刊文献+

非线性几何规划的几种算法

Several Algorithms for Nonlinear Geometric Programming
下载PDF
导出
摘要 介绍了非线性规划的数学模型(即具有不等式约束条件的求解目标函数最优化解的一类优化问题)以及现今求解这类非线性规划问题时,运用最为广泛的罚函数内点算法,同时介绍了解决几何规划问题的两种算法,内点路经跟踪法和序列二次规划法。通过实例,对比了文中所介绍的内点路径跟踪法和序列二次规划法的运算结果,最终给出结论。 This article describes the mathematical model of nonlinear programming,namely what with inequality constraints of the optimal solution for a class of objective functions for solving optimization problems.The most widely used method for solving nonlinear programming problems today is introduced,that is penalty interior point method algorithm.Interior-point method of path tracking and sequential quadratic programming method are presented for solving geometric programming problems.A comparison is made between the results of Interior-point method of path tracking and sequential quadratic programming method using examples.The results show that the sequential quadratic programming method is superior to the other two methods both in number of iterations and in the running final optimization solution.
作者 赵杨
出处 《电子科技》 2012年第10期109-113,共5页 Electronic Science and Technology
关键词 非线性规划 罚函数法 几何规划 内点法 序列二次规划法 nonlinear programming penalty function method geometric programming interior-point method SQP
  • 相关文献

参考文献8

  • 1PASSY U,WILDE D J. A geometric programming algorithmfor solving chemical engineering problems [ J]. SIAM Re-view,1968(16) :363-373.
  • 2AVRIEL M,WILDE D J. Optimal condenser design by geo-metric programming [ J]. I&EC Process Design and Develop-ment, 1967(6) :256 -263.
  • 3RIJCKAERT M J,MARTENS X M. Analysis and optimizationof the Williams - Otto process by geometric programming[J]. AlChe Journal,1974,20(4) :742 -750.
  • 4SOESILO D,MIN K J. Inventory model with variable levels ofquality attributes via geometric programming [ J]. Interna-tional Journal of Systems Science, 1996,27(4) :379 -386.
  • 5BALACHANDRAN V,GENSCH D. Solving the marketing -mix problem using geometric programming [ J]. ManagementScience, 1974(21) :160-171.
  • 6ABOU -El- ATA M 0,KOTB K A M. Multi - item EOQ in-ventory model with varying holding cost under two restric-tions :a geometric programming approach [ J ]. ProductionPlanning and Control, 1997,8(6) :608 -611.
  • 7GUPTA R,BATRA J L,LAL G K. Profit rate maximization inmultipass turning with constraints : a geometric programmingapproach [ J]. International Journal of Production Research,1994,32(7);1557 -1569.
  • 8HARIRI A M A,ABOU -El- ATA M 0. Multi - item pro-duction lot - size inventory model with varing order cost un-der a restrictions: a geometric programming approach [ J].Production Planning and Control, 1997 ,8(2) : 179 - 182.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部