期刊文献+

基于IHDR自主学习框架的无人机3维路径规划 被引量:14

UAV 3D Path Planning Based on IHDR Autonomous-Learning-Framework
原文传递
导出
摘要 提出一种基于自主学习框架的无人机3维路径规划方法.该自主学习框架由知识学习、知识检索和在线更新三部分组成.在该框架中,无人机在线路径规划时首先从过去的规划经验中提取控制量直接用于指导当前机器人的行动,另一方面,如果检索结果对于当前无人机的状态是无效的,可以在线启动常规3维路径规划算法,实时计算机器人的控制量,在控制机器人运动的同时将当前状态下的新决策量添加到知识库中从而对其进行更新.此外,分别采用增量分层判别回归算法(IHDR)和k-D树方法建立了路径规划知识库.其中,IHDR方法通过增量方式,可将以往的路径样本建立为一棵分层树.大量的仿真结果对比表明,在本文提出的框架下,基于IHDR的方法比传统的k-D树方法具有更好的实时性. An autonomous learning framework for UAV (unmanned aerial vehicle) 3D path planning is proposed. This framework consists of three parts, i.e. knowledge learning, knowledge retrieving and updating online. In this framework, the control value will be retrieved firstly from the existed knowledge when UAV runs online, so as the current action of the robot can be guided by the results. If the decisions retrieved from the knowledge base are invalid for the current UAV states, the custom algorithm for UAV path planning will be launched online and it generates the decisions for UAV's movement in real time. In the meanwhile, the knowledge library is updated by adding the new decisions for the current states. Additionally, the knowledge library is constructed by the algorithm of incremental hierarchical discriminant regression (IHDR) and k-D tree, respectively. Among these methods, IHDR can construct a hierarchical tree by using the past path planning samples. By several simulations, IHDR method demonstrates better real time performance than the traditional k-D tree method under the proposed framework.
出处 《机器人》 EI CSCD 北大核心 2012年第5期513-518,共6页 Robot
基金 国家自然科学基金资助项目(61035005 61075087 61203331) 湖北省自然科学基金资助项目(2010CDA005) 湖北省教育厅基金资助项目(Q20111105)
关键词 无人机 3维路径规划 自主学习框架 IHDR K-D树 UAV (unmanned aerial vehicle) 3D path planning autonomous learning framework IHDR (incrementalhierarchical discriminant regression) k-D tree
  • 相关文献

参考文献17

  • 1LaValle S M. Planning algorithms[M]. 2nd ed. New York, NY, USA: Cambridge University Press, 2006.
  • 2Tisdale J, Kim Z, Hedrick J. Autonomous UAV path planning and estimation[J]. IEEE Robotics and Automation Magazine, 2009, 16(2): 35-42.
  • 3Fahimi E Autonomous robots modeling, path planning, and control[M]. Boston, USA: Springer Science+Business Media, LLC, 2009.
  • 4Kuwata Y, How J. Three dimensional receding horizon control for UAVs[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA, USA: AIAA, 2004:2100-2113.
  • 5Earl M G, D'Andrea R. Iterative MILP methods for vehicle con- trol problems[J]. IEEE Transactions on Robotics, 2005, 21(6): 1158-1167.
  • 6Chen Y, Han J D. LP-based path planning for target pursuit and obstacle avoidance in 3D relative coordinates[C]//American Control Conference. Piseataway, NJ, USA: IEEE, 2010: 5394- 5399.
  • 7Goerzen C, Kong Z, Mettler B. A survey of motion planning al- gorithms from the perspective of autonomous UAV guidance[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4): 65- 100.
  • 8Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[J]. Autonomous Robots, 1996, 3(2/3): 79-89.
  • 9Kruusmaa M. Global level path planning for mobile robots in dynamic environments[J]. Journal of Intelligent and Robotic Systems, 2003, 38(1): 55-83.
  • 10Chen C L, Li H X, Dong D Y. Hybrid control for robot navigation - A hierarchical Q-learning algorithm[J]. IEEE Robotics and Automation Magazine, 2008, 15(2): 37-47.

二级参考文献27

  • 1杜春侠,高云,张文.多智能体系统中具有先验知识的Q学习算法[J].清华大学学报(自然科学版),2005,45(7):981-984. 被引量:21
  • 2SUTTON R S, BARTO A G. Reinforcement learning:an introduction[M]. Cambridge, Mass., USA:MIT Press, 1998.
  • 3BRATMAN M E. Intentions, plans, and practical reason[M]. Cambridge, Mass., USA:Harvard University Press, 1987.
  • 4DIETTERICH T. The MAXQ method for hierarchical reinforcement learning[C]//Proceedings of the 15th ICML. San Francisco, Cal. , USA : Morgan Kaufmann, 1998 :118-126.
  • 5SPIROS K, DANIEL K. Reinforcement learning of coordination in cooperative MAS[C]//Proceedings of the 8th National Conference on AI. Alberta, Canada:ACM Press, 2002:326-331.
  • 6TESSIER C, CHAUDRON L. Confilicting Agents-conflict management in multi Agent systems[M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.
  • 7RAO A S, GEORGEFF M P. BDI Agents:from theory to practice[C]//Proeeedings of the 1st International Conference on Multi-Agent Systems. New York, N. Y. , USA: ACM Press, 1995:312-319.
  • 8WOOLDRIDGE M J, JENNINGS N R. Pitfalls of Agent-oriented development[C]//Proceedings of the 2nd International Conference on Autonomous Agents. New York, N. Y. , USA:ACM Press, 1998:385-391.
  • 9GAT E. On three-layer architectures [C]//Proceedings of Artificial Intelligence and Mobile Robots. Menlo Park:Cal. , USA:AAAI Press, 1998:195 210.
  • 10SU'fTON R S , BARTO A G. Reinforcement learning: an introduction [ M ]. London : MIT Press ,2005.

共引文献11

同被引文献186

引证文献14

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部