期刊文献+

基于动态插补方法的上肢康复机器人运动控制 被引量:6

Upper-limb Rehabilitation Robot Motion Control Based on Dynamic Interpolation
原文传递
导出
摘要 为提高康复训练机器人运动控制性能,提出了基于动态插补策略的控制系统设计方法.首先采用分段平滑标准差方法提取患肢运动特征并通过模糊推理实时评估患肢物理状态;然后运用动态插补决策机制选择适宜的插补方法进行运动控制;最后利用位置阻抗控制实现训练运动.该方法避免了传统单一插补方法的局限性,能够有效地融合不同插补方法的特性.在由WAMTM构建的康复机器人平台上进行实验,结果表明,本文方法在扰动情况下具有更优的运动控制性能. A control system design method based on dynamic interpolation strategy is proposed to improve the motion control performance of rehabilitation robot. Firstly, the impaired-limb movement features are extracted with sliding standard deviation for a certain data samples, and the real-time physical state of impaired limb is acquired by fuzzy reasoning. Secondly, the appropriate interpolation method for motion control is recommended using dynamic interpolation decision-making mechanism. Finally, the position-based impedance control is adopted to carry out training exercise. The proposed method avoids the limitations of the conventional single-interpolation methods, and effectively integrates the characteristics of different interpolation methods. Experimental results based on WAM^TM rehabilitation robot show that the designed control system with proposed method demonstrates better motion control performances under disturbances.
出处 《机器人》 EI CSCD 北大核心 2012年第5期539-545,共7页 Robot
基金 国家自然科学基金资助项目(61104206) 江苏省自然科学基金资助项目(BK2010063) 江苏常州工业科技攻关项目(CE20100022)
关键词 康复机器人 运动控制 动态插补 平稳性 模糊逻辑 rehabilitation robot motion control dynamic interpolation stability fuzzy logic
  • 相关文献

参考文献17

  • 1Laura M C, David J R. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of Neuro- Engineering and Rehabilitation, 2009, 6: 20.
  • 2Choi Y, Gordon J, Kim D. An adaptive automated robotic task-practice system for rehabilitation of arm functions after stroke[J]. IEEE Transactions on Robotics, 2009, 25(3): 556- 568.
  • 3Adel O, Richard B, Olivier G, et al. Feedrate planning for machining with industrial six-axis robots[J]. Control Engineering Practice, 2010, 18(5): 471-482.
  • 4Wang C, Xu S. Lagrange fuzzy interpolating controlling and simulation on semi-active suspension of vehicle[C]//international Conference on Intelligent Computation Technology and Automation. Piscataway, NJ, USA: IEEE, 2009: 78-81.
  • 5Bai Y, Wang D L. On the comparison of trilinear, cubic spline, and fuzzy interpolation methods in the high-accuracy measurements[J]. 1EEE Transactions on Fuzzy Systems, 2010, 18(5): 1016-1022.
  • 6Guan Y S, Yokoi K, Stasse O, et al. On robotic trajectory planning using polynomial interpolations[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2005: 111-116.
  • 7Tian L E Collins C. An effective robot trajectory planning method using a genetic algorithm[J]. Mechatronics, 2004, 14(5): 455-470.
  • 8Li T H, Su Y T, Lai S W, et al. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(3): 736-748.
  • 9Yi S Y. Reliable gait planning and control for miniaturized quadruped robot pet[J]. Mechatronics, 2010, 20(4): 485-495.
  • 10Harada K, Hattori S, Hirukawa H, et al. Two-stage time-parametedzed gait planning for humanoid robots[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(5): 694- 703.

二级参考文献21

  • 1闫茂德,吴青云,贺昱曜.非完整移动机器人的自适应滑模轨迹跟踪控制[J].系统仿真学报,2007,19(3):579-581. 被引量:34
  • 2Kiguchi K,Rahman M H,Sasaki M,et al.Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist[J].Robotics and Autonomous Systems,2008,56(8):678-691.
  • 3Richardson R,Jackson A,Culmer E et al.Pneumatic impedance control of a 3-d.o.f.physiotherapy robot[J].Advanced Robotics,2006,20(12):1321-1339.
  • 4Akdo(g)an E,Tacgin E,Adli M A.Knee rehabilitation using an intelligent robotic system[J].Journal of Intelligent Manufacturing,2009,20(2):195-202.
  • 5Veneman J E Kruidhof R,Hekman E E G,et al.Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):379-386.
  • 6Zhang L Q,Portland G H,Wang G,et al.Stiffness,viscosity,and upper-limb inertia about the glenohumeral abduction axis[J].Journal of Orthopedic Research,2000,18(1):94-100.
  • 7Mallapragada V,Erol D,Sarkar N,et al.A new method of force control for unknown environments[J].International Journal of Advanced Robotic Systems,2007,4(3):313-322.
  • 8Ju M S,Lin C C K,Lin D H,et al.A rehabilitation robot with force-position hybrid fuzzy controller:Hybrid fuzzy control of rehabilitation robot[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):349-358.
  • 9Zhang L Q,Chung S G,Bai Z Q,et al.Intelligent stretching of ankle joints with contracture/spasticity[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10(3):149-157.
  • 10Barbeau H, Norman K, Fung J, et al. Does neurorehabilitation play a role in the recovery of walking in neurological popula-tions[J]. Annals of the New York Academy of Sciences, 1998, 860(1): 377-392.

共引文献35

同被引文献81

  • 1郭闯强,倪风雷,刘宏.多目标位姿约束下空间机器人载体姿态扰动优化[J].空间科学学报,2015,35(2):230-236. 被引量:5
  • 2张付祥,付宜利,王树国.康复机器人研究进展[J].河北工业科技,2005,22(2):100-105. 被引量:30
  • 3葛正浩,任子文,李晓芳,胡志刚.混合驱动机构研究综述[J].机械设计,2006,23(2):1-3. 被引量:9
  • 4张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究[J].清华大学学报(自然科学版),2006,46(11):1864-1867. 被引量:11
  • 5Gritsenko V, Prochazka A. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function [ J ]. Archives of Physical Medicine and Rehabilitation,2004,85(6) :881-885.
  • 6Ragnarsson K. Functional electrical stimulation after spinal cord injury: current use ,therapeutic effects and future directions [ J]. Spinal Cord, 2007,46(4) :255-274.
  • 7Kern H, Hofer C ,Vogelauer M ,et al. Functional electrical stimulation of denervated muscle : clinical improvements [ J ]. Basic Appl Myol,2006,16(3) :97-99.
  • 8Olivetti L, Schurr K, Sherrington C, et al. A novel weight-bearing strengthening program during rehabilitation of older people is feasible and improves standing up more than a non-weight-bearing strengthening program : a randomised trial[ J ]. Australian Journal of Physiotherapy,2007,53 (3) : 147.
  • 9Kamnik R,Bajd T. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study [ J ]. Medical Engineering and Physics,2007,29(9) :1019-1029.
  • 10Kamnik R,Bajd T, Williamson J, et al. Rehabilitation robot cell for muhimodal standing-up motion augmentation [ C ]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005 : 2277 -2282.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部