期刊文献+

针叶树基因组资源及其在遗传育种中的作用 被引量:1

Conifer genomic resources and its applications in conifer genetics breeding
下载PDF
导出
摘要 针叶树遗传改良已经进行了半个多世纪,但由于基因组巨大、杂合度高和世代周期长等特点,针叶树基因组资源开发滞后于作物和阔叶树种,这直接导致了基因组辅助育种工具的缺乏,进而阻碍了林木遗传改良的进程。回顾了近年来针叶树基因组研究进展,重点阐述了分子标记和转录本在针叶树遗传育种领域中的重要作用。新一代测序技术的出现将使针叶树基因组资源研究进入一个重要和多产的时期,针叶树基因组资源在林木育种的作用也将越来越受到关注。 Breeding programs to improve conifers have been in existence for more than 50 years, but progress has been slow because of the large size of genome and absent genomic-assisted breeding tools. Over the past two decades, research in conifer genomics has lagged behind that of agricultural and major hardwood species. This paper summarized the progress on conifer genomics research over resent years and molecular markers and transcripts applications in conifer genetics breeding. Genomic research in conifer was poised to enter into an important and productive phase owing to the advent of the new-generation sequencing technologies, and conifer genomics resources would play a more and more important role in conifer genetics breeding. [Ch, 115 ref. ]
出处 《浙江农林大学学报》 CAS CSCD 北大核心 2012年第5期768-777,共10页 Journal of Zhejiang A&F University
基金 "十二五"国家科技支撑计划项目(2012BAD01B01) 国家重点基础研究发展计划("973"计划)项目(2009CB119100)
关键词 林木育种学 针叶树 基因组资源 遗传育种 综述 forest tree breeding conifer genomic resources genetics breeding review
  • 相关文献

同被引文献57

  • 1Ahuja MR, Neale DB (2005). Evolution of genome size in conifers. Silvae Genet 54, 126-137.
  • 2AIIona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J,Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998). Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95, 9693-9696.
  • 3Bautista R, ViUalobos DP, Diaz-Moreno S, Canton FR, Canovas FM, Claros MG (2007). Toward a Pinus pinas- ter bacterial artificial chromosome library. Ann For Sci 64, 855-864.
  • 4Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003). Comparisons with Caenorhabditis (-100 Mb) and Dro- sophila (-175 Mb) using flow cytometry show genome size in Arabidopsis to be -157 Mb and thus -25% larger than the Arabidopsis genome initiative estimate of -125 Mb. Ann Bot 91,547-557,.
  • 5Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling Cl, Brand D, Vander- valk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J, Bohlmann J, Jones SJM (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29. 1492-1497.
  • 6Buschizzo E, Ritland C, Bohlmann J, Ritland K (2012). Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Bio112, 8.
  • 7Chen J, Uebbing S, Gyllenstrand N, Lagercrantz U, Lascoux M, Kallman T (2012). Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective con- straints in gymnosperms and angiosperms. BMC Ge- nomics 13.589.
  • 8Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011). A new classification and lin- ear sequence of extant gymnosperms. Phytotaxa 19, 55- 70.
  • 9Claros MG, Bautista R, Guerrero-Ferndndez D, Benzerki H, Seoane P, Fernandez-Pozo N (2012). Why assem- bling plant genome sequences is so challenging. Biology t. 439--459.
  • 10Cronn R, Knaus BJ, Dolan P, Denver D, Clair BS (2013). Transcriptome dynamics of the dormancy-growth transi- tion in Douglas-fir needles. Plant and Animal Genome XXI Conference. San Diego, CA. https://pag.confex.com/pag/ xxi/webprogram/Paper7999.html.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部