期刊文献+

广西陆川蛇纹石玉的岩相结构及成矿机理 被引量:9

Mineral Structure and Mineralization Mechanism of Serpentine Jade from Luchuan,Guangxi Province
下载PDF
导出
摘要 应用外束质子激发X射线荧光光谱法、X射线衍射、激光拉曼光谱、扫描电子显微镜等无损分析技术,对广西陆川蛇纹石玉的成分、物相和结构进行分析。X射线衍射结果显示样品的衍射峰主要位于0.724、0.456、0.362、0.248、0.153和0.150 nm处,表明陆川蛇纹石玉主要矿物成分是蛇纹石,同时伴生方解石矿物与蛇纹石形成穿插交织结构。成矿机理分析表明,陆川蛇纹石玉是由白云质大理岩热液交代作用形成的,和广东的信宜玉均属于富镁碳酸盐型蛇纹石。拉曼光谱显示叶蛇纹石的特征峰位于229、376、457、686和1046 cm-1处,纤蛇纹石的特征峰位于228、345、386、624、690和1102 cm-1处,通过激光拉曼光谱可以快速区分陆川蛇纹石玉中纤蛇纹石和叶蛇纹石两种不同结构的蛇纹石亚种。 The nondestructive analysis techniques of Proton Induced X-ray Emission (PIXE) , X-ray Diffraction (XRD), Laser Raman Spectroscopy (LRS) and Scanning Electron Microscopy (SEM) were applied to analyze the chemical composition and mineral structure of serpentine jade from Luchuan, Guangxi Province. The major XRD bands of the samples located at 0. 724, 0. 456, 0. 362, 0. 248, 0. 153 and 0. 150 nm, indicate that the major mineral of Luchuan jade is serpentine. Meanwhile, inte^q3enetration texture was formed between serpentine and associated calcite. Luchuan serpentine jade was formed by hydrothermal metasomatism from dolomitic marble, and both Luchuan Jade and Xinyi Jade belong to Mg-rich carbonate type serpentine. Raman characteristic bands of antigorite located at 229, 376,457, 686 and 1046 cm^(-1) while that of chrysotile occurred at 228, 345, 386, 624, 690 and 1102 cm^(-1). Therefore, the Raman spectroscopy can be used to identify chrysotile and antigorite of the serpentine minerals of Luehuan jade.
出处 《岩矿测试》 CAS CSCD 北大核心 2012年第5期788-793,共6页 Rock and Mineral Analysis
基金 国家自然科学基金项目(51072208) 中国科学院知识创新工程项目(KJC3.SYW.n12)
关键词 陆川蛇纹石玉 纤蛇纹石 岩相结构 外束质子激发X荧光光谱法 X射线衍射法 激光拉曼光谱法 扫描电镜 Luchuan serpentine jade chrysotile mineral structure Proton Induced X-ray Emission Spectrometry X-ray Diffraction Analysis Laser Raman Spectrometry Scanning Electron Microscopy
  • 相关文献

参考文献10

  • 1邹天人,郭立鹤,於晓晋.中国主要玉石类型及产地[J].矿床地质,1996,15(S1):79-92. 被引量:18
  • 2Cheng H S, Zhang Z Q, Zhang B, Yang F J. Non- destructive analysis and identification of jade by PIXE [ J l- Nuclear htruments and Methods in Physics Research Section B, 2004, 219 - 212 : 30 - 34.
  • 3Rinaudo C, Gastaldi D, Belluso E. Characterizatioin of chrysotile, antigorite and lizardite by FF-Raman spectroscopy [J]. The Canadian Mineralogist, 2003, 41: 883-890.
  • 4Kloprogge J T, Frost R L, Rintoul L. Single crystal Rmnan microscopic study of the asbestos mineral chrysotile [ J ]. Physical Chemistry, 1999, 1:2559-2564.
  • 5罗红宇,王春生,廖尚宜.宝石中常见过渡金属离子致色的理论解释[J].岩石矿物学杂志,2004,23(2):177-180. 被引量:13
  • 6Hess H H, Smith R J, Dengo G. Antigorite from the vicinity of Caracas, venezuela [ J ]. American Minerologist, 1952, 6 : 68 - 75.
  • 7Vyasa Rao A N, Murty M S. A study of the serpentinisation in the Vempalle dolomitic limestones near Pulivendala, Cuddapah District [ J ]. Journal of Earth System Science, 1980, 1: 17-22.
  • 8李娟.南方玉[J].广东有色金属地质,1991(1):49-50. 被引量:1
  • 9关崇荣,陈宇.广东省信宜市南方玉矿矿床地质特征[J].西部探矿工程,2005,17(12):152-153. 被引量:1
  • 10Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics [ J ]. European Journal of Mineralogy, 2006, 18 : 319 - 329.

二级参考文献4

共引文献28

同被引文献118

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部