摘要
遥感图像信息提取研究是遥感研究中的一个关键问题,也是遥感研究的热点和难点之一。使用2000~2010年MODIS-NDVI 16d合成数据和物候记录,借助GIS空间分析和统计分析方法,重构了古尔班通古特沙漠梭梭林地MeanNDVI时间序列特征曲线。分析物候与MeanNDVI时间序列表明,梭梭林地内的短命植物生长期早于梭梭。研究梭梭林地MeanNDVI时间序列曲线发现,曲线中存在一个明显区别于其他地物的特征点,该点可以作为梭梭林地信息"诊断点"。根据"诊断点"特征构建了梭梭林地特征指数模型(HFFI),进而反演了古尔班通古特沙漠梭梭林地信息,并利用地面实际观测资料进行验证,结果表明分类精度达到83%。
Remote sensing image information extraction research is one of the key problems of remote sens- ing research,it is also one of the hot and difficult points in remote sensing research. With the aid of the GIS spatial analysis and statistical analysis method,the Haloxylon Aamrnodendron forest MeanNDW time series characteristic curve were reconstructed in the Gurbantunggut Desert by using the NASA/MODIS-NDVI16 days synthetic data (from 2000 to 2010) and phenology record. Analysis of phenological and Mean_NDVI time series,the result showed that the Ephemeral plants (or short-lived plants) under the Haloxylon Aammo- dendron forest growth period is earlier than Haloxylon Aammodendron. Research ofMean_NDVI time series curve,showed that there is a feature point that obviously different from other features in the curve,which can be used as the "diagnosis point" of Haloxylon Aammodendron. A model of Haloxylon Aamrnodendron forest features index(HFFI) was developed based on the "diagnosis point" characteristics. Retrieved the in- formation of Haloxylon Aammodendron forest in the Gurbantunggut Desert from HFFI. And utilizing the data of the ground practical observation validation, the results indicate that the classification accuracy reached 83 %.
出处
《遥感技术与应用》
CSCD
北大核心
2012年第5期784-789,共6页
Remote Sensing Technology and Application
基金
新疆师范大学2011~2012年度研究生科技创新立项项目(20111210)
国家沙漠气象研究基金(sqj2008001)资助