期刊文献+

7.0T功能MR波谱动态定量检测视觉皮层代谢物对视觉刺激的反应 被引量:4

Investigation of the metabolic changes in visual cortex due to visual stimulation using high field magnetic resonance spectroscopy at 7. 0 T
原文传递
导出
摘要 目的采用超高场强(7.0T)功能MR波谱(fMRS),动态定量检测人脑枕叶视觉皮层代谢物对视觉刺激的反应,探讨人脑在功能活动状态下的能量代谢和神经递质传递的活动情况。方法9名健康志愿者参与本次试验。采用人体7.0TMR扫描仪及16通道敏感相位编码技术(SENSE)头线圈。首先进行fMRI检查,明确视觉皮层的最大激活区。然后进行。H-MRS检查,ROI为2cm×2cm×2cm,定位于视觉皮层最大激活层面。采用短TE激励回波采集模式(STEAM)序列采集波谱数据,^1H-MRS扫描过程中同时给予受试者与fMRI检查相同的视觉刺激。运用线性拟合模型(LCModel)以水为内标准,分别测定各代谢物在静息期和刺激期的绝对浓度。采用配对设计数据的Wilcoxon符号秩和检验比较各代谢物浓度在刺激前后差异是否有统计学意义。结果视觉刺激状态下,天冬氨酸、谷氨酰胺及甘氨酸的浓度分别为(3.20±0.28)、(2.07±0.10)和(1.65±0.11)μmol/g,较静息期[分别为(3.52±0.28)、(2.25±0.10)和(1.85±0.11)μmol/g]降低,差异有统计学意义(Z值分别为-2.073、-2.073、-2.429,P值均〈0.05)。谷氨酸、谷胱甘肽及乳酸的浓度分别为(11.50±0.11)、(2.45±0.10)和(0.89±0.05)μmol/g,较静息期[分别为(11.28±0.11)、(2.28±0.10)和(0.79±0.05)μmol/g]升高,差异有统计学意义(Z值分别为2.521、2.310、2.016,P值均〈0.05)。葡萄糖浓度[(1.54±0.23)μmol/g]在刺激状态下有降低趋势,但与静息期[(1.78±0.28)μmol/g]比较差异无统计学意义(Z=-1.897,P〉0.05)。结论7.0TfMRS结合LCModel可以定量检测人脑视觉皮层多种代谢物对视觉刺激的反应变化。视觉刺激状态下,激活区乳酸、葡萄糖和天冬氨酸的变化提示脑能量代谢水平的升高;谷氨酸升高伴随谷氨酰胺下降可能提示兴奋性神经递质传递活动的改变;谷胱甘肽升高则提示脑激活状态下抗氧自由基活动增强。 Objective To investigate the metabolic changes in the visual cortex due to visual stimulation using high field functional proton magnetic resonance spectroscopy at 7.0 T. A clear picture of brain metabolism and neurotransmitter activity during activation was expected to be established. Methods Nine healthy subjects participated in this study. All MR measurements were acquired using a 7. 0 T MR system and a 16-channel SENSE head coil. An initial fMRI scan was performed prior to spectroscopic acquisition in order to determine the activated region in the visual cortex. A cubic ROI of 2 cm × 2 cm ×2 cm was positioned inside the activated region for functional MRS acquisition. A short TE STEAM sequence was used for acquiring the MRS data. The functional paradigm comprised 6. 6 min baseline followed by 13.2 rain of visual stimulation and 19.8 min recovery. Summed averaged spectra for visual stimulus off and visual stimulus on were analyzed separately using LC Model and internal reference of water. A Wilcoxon signed rank test was conducted to compare the metabolite changes. Results During stimulation, concentration in Asp [ ( 3.20 ± 0. 28 ) μmol/g ], Gin [ ( 2. 07 ± 0. 10 ) μmol/g ] and Gly [ ( 1.65 ± 0. 11 ) μmol/g ] was found to be significantly decreased, compared with that of (3.52 ±0. 28), (2.25 ±0. 10) and (1.85 ± 0. 11 ) μmol/g in rest (Z = - 2. 073, - 2. 073 and - 2. 429, respectively, P 〈 0. 05 ). The level in Glu [ ( 11.50 ± 0. 11 ) μmol/g], GSH [ ( 2. 45 ± 0. 10 ) μmol/g] and Lac [ ( 0. 89 ± 0. 05 ) μmol/g due to neuronal activation was found to be significantly increased, versus resting concentration of ( 11.28 ± 0. 11 ), (2. 28 ± 0. 10 ) and (0. 79 ± 0. 05 ) μmol/g, respectively (Z = 2. 521,2. 310,2. 016, respectively, P 〈 0. 05). Glc level [ ( 1.54 ± 0. 23 )μmol/g I exhibited a tendency to decrease throughout the period of stimulation, compared with that of [ ( 1.78 ± 0. 28 ) μmol/g I in rest, but the decrease did not reach statistical significance(Z = - 1. 897, P 〉 0. 05). Conclusions Using a novel visual stimulation paradigm and 1H MRS at 7.0 T and LC Model, the metabolic response to activation have been able to be observed. The observed changes of Asp, Glc and Lac concentrations in response to visual stimulation suggests that sustained neuronal activation raises oxidative metabolism to a new steady state. The observation of increased Glu with decreased Gin during stimulation can be interpreted as a stimulus driven increase in excitatory neurotransmitter cycling. The elevated GSH in the visual cortex in response to visual stimulation is a new observation. Possible explanations for this include detoxification of reactive oxygen species.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2012年第10期875-880,共6页 Chinese Journal of Radiology
基金 基金项目:国家自然科学基金重点资助项目(30930027) 国家自然科学基金青年基金资助项目(81101102) 广东省自然科学基金资助项目(S2011010004973)志谢英国诺丁汉大学SirPeterMansfield磁共振研究中心的Dr.MaryStephenson在MATLAB方面给予大力支持和帮助.瑞士洛桑大学的辛立静博士在LCModel基数组方面给予支持和建议.英国医学研究委员会给予大力资助
关键词 磁共振波谱学 视觉 能量代谢 Magnetic resonance spectroscopy Vision Energy metabolism
  • 相关文献

参考文献20

  • 1王志,陈敏,周诚,孙非.视觉皮层对视觉刺激反应的研究——脑功能磁共振成像及磁共振波谱的联合应用[J].中国医学影像技术,2006,22(1):19-21. 被引量:4
  • 2Tuunanen PI, Vidyasagar R, Kauppinen RA. Effects of mild hypoxic hypoxia on poststimulus undershoot of blood-oxygenation- level-dependent fMRI signal in the human visual cortex. Magn Reson Imaging,2006,24 : 993-999.
  • 3Mangia S, Garreffa G, Bianciardi M, et al. The aerobic brain: lactate decrease at the onset of neuralactivity. Neuroscience, 2003,118 : 7-10.
  • 4Mangia S ,Tk6c I, Gruetter R, et al. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from I H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab,2007,27 : 1055-1063.
  • 5Tk6c I, Andersen P, Adriany G, et al. In vivo IH NMR spectroscopy of the human brain at 7.0 T. Magn Reson Med, 2001,46 : 451-456.
  • 6Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci ,2005,360: 693 -707.
  • 7Gruetter R, Tkdc I. Field mapping without reference scan usingasymmetric echo-planar techniques. Magn Reson Med,2000,43 : 319-323.
  • 8Taras6w E, Wiercifska-Drapao A, Kubas B, et al. Cerebral MR spectroscopy in neurologically asymptomatic biv-infeeted patients. Acta Radiol,2003,44 : 206-212.
  • 9Tk(ac I, Gruetter R. Methodology of H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson, 2005,29 : 139-157.
  • 10Wang X, Lee JH. IRIS-HSVD algorithm for automatic quantitation of in vivo 31p MRS. J Magn Reson,2009,196: 23-32.

二级参考文献21

  • 1饶海冰,孔抗美,肖壮伟,郑文斌,刘国瑞,郎志谨,吴仁华.MR频谱检测乳酸的脉冲序列优化研究[J].中华放射学杂志,2004,38(10):1108-1111. 被引量:4
  • 2林艳,饶海冰,吴仁华.1H—MRS定量测定脑代谢物的研究[J].国外医学(放射医学核医学分册),2005,29(2):85-88. 被引量:13
  • 3Ross AJ,Sachdev PS.Magnetic resonance spectroscopy in cognitive research[J].Brain Res Brain Res Rev,2004,44(2-3):83-102.
  • 4Boucard CC,Mostert JP,Cornelissen FW,et al.Visual stimulation,1H MR spectroscopy and fMRI of the human visual pathways[J].Eur Radiol,2005,15(1):47-52.
  • 5Prichard J,Rothman D,Novotny E,et al.Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation[J].Proc Natl Acad Sci USA,1991,88(13):5829-5831.
  • 6Richards TL,Dager SR,Corina D,et al.Dyslexic children have abnormal brain lactate response to reading-related language tasks[J].Am J Neuroradiol,1999,20(8):1393-1398.
  • 7Richards TL,Corina D,Serafini S,et al.Effects of a phonologically driven treatment for dyslexia on lactate levels measured by proton MR spectroscopic imaging[J].Am J Neuroradiol,2000,21(5):916-922.
  • 8Tong Z, Yamaki T, Harada K, et al. In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging, 2004, 22 : 1017-1024.
  • 9Li BS, Wang H, Gonen O. Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging, 2003, 21: 923-928.
  • 10Tkac I, Keene CD, Pfeuffer J, et al. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo (1)H NMR spectroscopy. J Neurosci Res, 2001, 66: 891-898.

共引文献11

同被引文献42

  • 1Lin Y,Stephenson M C, Xin L J, et al. Investigating the meta bolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7T[J]. J Cereb Blood Flow Metab, 2012,32(8) 1484- 1495.
  • 2Ala Korpela M. Potential nomics as a prognostic and agn,2007,7(6) :761-773.
  • 3Saric J, Wang Y, Li J, et al. Species Variation in the fecal metabolome gives insight into differential gastrointestinal func- tion[J]. J Proteome Res,2007,7(1) :352-360.
  • 4Serkova N J, Niemann C U. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics [J]. Expert Rev Mol Diagn,2006,6(5) :717-731.
  • 5Bezabeh T, Somorjai R, Dolenko B, et al. Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts [J]. NMR Biomed,2009,22(6) :593-600.
  • 6Bezabeh T,Somorjai R,Smith I C P. MR metabolomics of fecal extracts: applications in the stdy of bowel diseases[J]. Magn Reson Chem, 2009,47 ( Suppl 1 ) : s54- 61.
  • 7MonleOn D, Morales J M, Barrasa A, et al. Metabolite profiling of fecal water extracts from human colorectal caneer[-J]. NMR Biomed,2009,22(3) :342- 348.
  • 8Lim C C,Ferguson L R,Tannock G W. Dietary fibres as "prebi- otics": implications for colorectal cancer [J]. Mol Nutr Food Res,2005,49(6) :609-619.
  • 9林艳,沈智威,肖叶玉,郑文斌,李慧,肖壮伟,吴仁华.长回波时间的点解析波谱序列外标准结合线性拟合模型定量检测脑肌酸浓度准确性的实验研究[J].中华放射学杂志,2008,42(1):34-37. 被引量:9
  • 10Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部