期刊文献+

深水钻井天然气水合物地层井壁稳定流固耦合数值模拟 被引量:13

Fluid-solid coupling numerical simulation on wellbore stability in gas-hydrate-bearing sediments during deep water drilling
下载PDF
导出
摘要 考虑钻井液与地层的热交换和水合物的分解,建立了水合物地层井壁稳定流固耦合数学模型,并开发了有限元程序。实例分析了钻井液压力和温度、原始地层水合物饱和度及施工作业时间等因素对水合物地层井壁稳定的影响,结果表明:随着钻井液温度、施工作业时间的增加,井眼周围地层水合物分解区域、地层最大屈服区域增大,不利于井壁稳定;随着钻井液压力、原始地层水合物饱和度增加,井眼周围地层水合物分解区域、地层最大屈服区域减小,有利于井壁稳定,因此深水钻井中应选择造壁性能好的低温钻井液并适当增加液柱压力。 Considering the dissociation of gas hydrates and thermal transport between drilling fluid and formation,a fluid-solid coupling mathematical model was established for wellbore stability in gas-hydrate-bearing sediments(HBS),and a corresponding finite element program was developed.Taking a specific hydrate formation as an example,this paper analyzes the effects of influential factors on wellbore stability in HBS,such as drilling fluid pressure and temperature,initial hydrate saturation and working time.The results show that: both the hydrate dissociation zone and the maximum yield region around borehole enlarge with the increasing of drilling fluid temperature and working time,which is disadvantageous to wellbore stability;but they reduce with the increasing of drilling fluid pressure and initial hydrate saturation,which benefits the wellbore stability in HBS.So the low temperature drilling fluid with good plastering property should be chosen and the drilling fluid pressure can be increased appropriately in deep water drilling in order to maintain the wellbore stability in HBS.
出处 《中国海上油气》 CAS 北大核心 2012年第5期40-45,49,共7页 China Offshore Oil and Gas
基金 国家科技重大专项"深水流动安全保障和水合物风险控制技术(编号:2008ZX05026-004-11)"和"浅层天然气水合物钻探取心技术(编号:2011ZX05026-004-08)"资助
关键词 天然气水合物地层 井壁稳定 流固耦合 数值模拟 深水钻井 gas-hydrate-bearing sediments wellbore stability fluid-solid coupling numerical simulation deep water drilling
  • 相关文献

参考文献18

  • 1COLLETT T S. Geology of marine gas hydrates and their global distribution[R]. OTC 19241,2008.
  • 2BOSWELL R. Is gas hydrate energy within research? [J]. Science, 2009,325 (5943) :957-958.
  • 3NIMBLETT J N,SHIPP R C, STRIJOS F. Gas hydrate as a drilling hazard: examples from global deepwater settings[R]. OTC 17476-MS P,2005.
  • 4白玉湖,李清平,周建良,刘莹辉.天然气水合物对深水钻采的潜在风险及对应性措施[J].石油钻探技术,2009,37(3):17-21. 被引量:44
  • 5李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气(工程),2006,18(2):130-133. 被引量:123
  • 6FREIJ-AYOUB R, TAN C, CLENNELL B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering,2007,57(2):209-220.
  • 7TAN C P, FREIJ-AYOUB R,CLENNELL M B, et al. Man- aging wellbore instability risk in gas-hydrate-bearing sedi- ments[R]. SPE 92960,2005.
  • 8RUTQVIST J, GROVER T, MORIDIS G J. Coupled hydro- logical, thermal and geomeehanieal analysis of wellbore stabil- ity in hydrate bearing sediments[R]. OTC I9572,2008.
  • 9RUTQVIST J, MORIDIS G J. Numerical studies on the geo- mechanical stability of hydrate bearing sediments[R]. OTC 18860,2007.
  • 10KHUSHID I, LEE K J, BAHK J J, et al. Heat transfer and well bore stability analysis in hydrate bearing zone in the east sea, South Korea[R]. OTC 20582,2010.

二级参考文献31

共引文献178

同被引文献162

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部