期刊文献+

Al-Zn-Mg-Cu合金冷却过程中组织演变及其动力学分析(英文) 被引量:4

Microstructure evolution in cooling process of Al-Zn-Mg-Cu alloy and kinetics description
下载PDF
导出
摘要 采用透射电镜(TEM)和差示扫描量热法(DSC)相结合的分析方法,研究不同冷却速率条件下固溶态Al-Zn-Mg-Cu合金冷却过程中的组织演变,并根据DSC结果对该过程进行动力学分析。结果表明:在冷却过程中,合金的主要相转变是η相(MgZn2)的析出,且η相在晶内弥散体处以及晶界上形核析出。η相的析出量随着冷却速率的增大而明显减少,当冷却速率从5℃/min增大到50℃/min时,η相的析出量减少了约75%。在冷却速率恒定的情况下,可以根据DSC曲线,使用Kamamoto相变模型来描述η相的析出过程。 The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2087-2091,共5页 中国有色金属学报(英文版)
基金 Project(50975053) supported by the National Natural Science Foundation of China
关键词 AL-ZN-MG-CU合金 组织演变 析出 动力学模型 Al-Zn-Mg-Cu alloy microstructure evolution precipitation kinetics model
  • 相关文献

参考文献2

二级参考文献33

  • 1李成功 巫世杰 等.先进铝合金在航空航天工业中的应用与发展[J].中国有色金属学报,2002,12(1):14-21.
  • 2Robinson J S,Cudd R L,Tanner D A.Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J].Journal of Materials Processing Technology,2001,119(1/3):261-267.
  • 3Lim S T,Yun S J,Nam S W.Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications[J].Mater Sci Eng A,2004,A371(1/2):82-90.
  • 4Dumont D,Deschamps A.Characterization of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behavior[J].Mater Sci Technol,2004,20(5):567-576.
  • 5Deschamps A,Brechet Y.Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu alloy[J].Scripta Materialia,1998,39(11):1517-1522.
  • 6Deschamps A,Brechet Y.Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy[J].Mater Sci Eng A,1998,A251(1/2):200-207.
  • 7Godard D,Archambault P,Aeby-Gautier E.Precipitation sequences during quenching of the AA7010 alloy[J].Acta Materialia,2002,50(9):2319-2329.
  • 8Milman Y U,Sivku A I,Lotsko D V.Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc[J].Materials Science and Forum,2002,396/402:1217-1222.
  • 9Porter D A,Easterling K E.Phase Transformation in Metals and Alloys[M].Oxford:Alden Press,1981:292.
  • 10Mackenzies D S.Quench Rate and Aging Effects in AlZnMgCu Aluminum Alloy[D].Missouri:University of Missouri-Rolla,2000:19-20.

共引文献26

同被引文献33

  • 1冯春,刘志义,宁爱林,刘延斌,曾苏民.Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy[J].中国有色金属学会会刊:英文版,2006,16(5):1163-1170. 被引量:12
  • 2CIOMPI E, LANCIOTTI A. Susceptibility of 7050-T7451 electron beam welded specimens to stress corrosion [J]. Engineering Fracture Mechanics, 1999, 62(4-5): 463-476.
  • 3SCHUBBE J J. Evaluation of fatigue life and crack growth rates in 7050-T7451 aluminum plate for T-L and L-S oriented failure under truncated spectra loading [J]. Engineering Failure Analysis, 2009, 16(1): 340-349.
  • 4SCHUBBE J J. Fatigue crack propagation in 7050-T7451 plate alloy [J]. Engineering Fracture Mechanics, 2009, 76(8): 1037-1048.
  • 5NAJJAR D, MAGNIN T, WARNER T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy [J]. Materials Science and Engineering A, 1997, 238(2): 293-302.
  • 6SONG R G, DIETZEL W, ZHANG B J, LIU W J, TSENG M K, ATRENS A. Stress corrosion cracking and hydrogen embrittlement of an AI-Zn-Mg-Cu alloy [J]. Acta Materialia, 2004, 52(16): 4727-4743.
  • 7WLOKA J, BURKLIN G, VIRTANEN S. Influence of second phase particles on initial electrochemical properties of AA7010-T76 [J]. Electrochimica Acta, 2007, 53(4): 2055-2059.
  • 8KIM S H, ERB U, AUST K T, PALUMBO G. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [J]. Scripta Materialia, 2001, 44(5): 835-839.
  • 9XU D K, BIRBILIS N, LASHANSKY D, ROMETSCH P A, MUDDLE B C. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance [J]. Corrosion Science, 2011, 53(1): 217-225.
  • 10OU B L, YANG J G. WEI M Y. Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys [J]. Metallurgical and Materials Transactions A, 2007, 38(8): 1760-1773.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部