期刊文献+

基于新型机器学习方法的蛋白质功能预测与分析

Prediction and analysis of protein function based on novel machine learning methods
下载PDF
导出
摘要 介绍了蛋白质功能预测与分析的现状和主要研究内容,并说明了如何利用新型机器学习方法来进行这方面的研究工作,并对其以后的发展提出了展望。 This article describes the main contents and current status of protein function prediction and analysis, and how to carry out research in this area by using novel machine learning methods, and propose its future development.
作者 吴建盛
出处 《信息通信》 2012年第5期19-20,共2页 Information & Communications
基金 南京邮电大学科研启动基金项目(NY209027) 南京邮电大学教学改革研究招标项目(JG01611JX02)
关键词 蛋白质功能预测 机器学习 多示例多标记学习 protein function prediction machine learning multi-instance multi-label learning
  • 相关文献

参考文献10

  • 1Erdin S, Lisewski AM, Lichtarge O: Protein function pre- diction: towards integration of similarity metrics. Curr Opin Struct Bio12011, 21 .. 1-9.
  • 2Barrell D, Dimmer E, Huntley RP, Binns D, O'Donovan C, Apweiler R: The GOA database in 2009--an integrated Gene Ontology Annotation resource. Nucleic Acids Res 2009, 37 (Database issue):D396-403.
  • 3Hawkins T, Luban S, Kihara D: Enhanced automated func- tion prediction using distantly related sequences and contex- tual association by PFP. Protein Sci 2006, 15:1550-1556.
  • 4Tian W, Arakaki AK, Skolnick J: EFICAz: a comprehensive approach for accurate genome-scale enzyme function infer. ence. Nucleic Acids Res 2004, 32:6226-6239.
  • 5HolmL, RosenstromP: Dali server: conservation mapping in 3D.Nucleic Acids Res 2010, 38(Suppl.):W545-W549.
  • 6Tseng YY, Dundas J, Liang J: Predicting protein function and binding profile via matching of local evolutionary and geometric, surface patterns. J Mol Biol 2009, 387:451-464.
  • 7Wallace AC, Laskowski RA, Thornton JM: Derivation of 3D coordinate templates for searching structural databases: application to Ser-His-Asp catalytic triads in the serine pro- teinases and lipases. Protein Sci 1996, 5:1001-1013.
  • 8Ward RM, Venner E, Daines B, Murray S, Erdin S, Kristensen DM, Lichtarge O: Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates. Bioinformatics 2009, 25:1426-1427.
  • 9Yeats C, Redfem OC, Orengo C: A fast and automated sol- ution for accurately resolving protein domain architectures. Bioinformatics 2010, 26(6):745-751.
  • 10Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In: Advan- ces in Neural Information Processing Systems 19 (NIPS'06) (Vancouver, Canada), B. Sch? lkopf, J. C. Platt, and T. Ho- fmann, eds. Cambridge, MA: MIT Press, 2007, pp. 1609-1616.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部