期刊文献+

天然氨基酸生物材料的自组装与细胞相容性研究 被引量:2

Study on the Self-assembly and Cytocompatibility of the Natural Amino Acid Biomaterials
原文传递
导出
摘要 天然氨基酸(NAA)是一种具有良好生物相容性的材料,对其进行功能化设计是近年来的热门研究领域。本文中将基于蚕丝蛋白的特征氨基酸序列(Gly-Ala)与离子互补多肽序列(Arg-Ala-Asp-Ala)混编,设计了多肽RAG-16。采用原子力显微镜、旋转流变仪、傅立叶变换红外光谱仪、倒置荧光显微镜等技术对多肽RAG-16的自组装结构、流变学性能以及细胞相容性等性质进行了表征。结果表明:多肽RAG-16在溶液中具有自组装特性,能够形成纳米级三维网络结构,所形成的水凝胶力学性能较佳。通过分析得知,多肽二级结构中Silk I结构比例增加是其力学性能增强的主要原因。荧光染色显示,绝大多数接种于多肽水凝胶中的MC3T3-E1细胞能够存活,且能在不同的三维平面上生长增殖,表明该材料具有良好的细胞相容性。综上所述,本实验中设计的NAA材料在生物医学领域有较大的应用潜力。 Functional designing of natural amino acids (NAA) has received considerable attention in recent years due to its excellent biocompatibility. A novel self-assembling NAA, peptide RAG-16, was designed by hybridizing the characteristic silk fibroin motif (Gly-Ala) with an ionic complementary peptide sequence (Arg-Ala-Asp-Ala) in our study. The self-assembly structure, viscoelastic property, and cyto compatibility of the peptide were investigated by atomic force microscopy, rheometer, fourier transform infrared spectrum, and inverted fluorescence microscope. RAG-16 was able to form a three-dimensional compact network structure in water. High mechanical performance of the peptide hydrogel was found due to the increase of the silk I structure from inserted fihroin motif segment. Fluo- rescence staining showed that vast majority of MC3T3-E1 cells in the RAG-16 hydrogel could adhere to, survive, and distribute on different planes. To sum up, in this experiment, the functional designing of the NAA has exhibited its potential application in biomedical field.
作者 周庆翰 林娟
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第5期898-902,共5页 Journal of Biomedical Engineering
基金 西南民族大学中央高校专项基金资助项目(12NZYQN11) 四川省教育厅科研基金资助项目(10ZC091) 成都医学院自然科学基金资助项目(CYZ11-010)
关键词 蚕丝蛋白 天然氨基酸 自组装 力学性能 细胞相容性 Silk fibroin Natural amino acid (NAA) Self-assembly Mechanical property Cyto compatibility
  • 相关文献

参考文献16

  • 1ZHANG S. Fabrication of novel biomaterials through molecu-lar self-assembly[J].Nat Biotechnol, 2003,21 ( 10) : 1171-1178.
  • 2ZHAO X J, ZHANG S G. Molecular designer self-assemblingpeptklesCJ].Chemical Society Reviews, 2006, 35(11) : 1105-1110.
  • 3ZHANG S, HOLMES T, LOCKSHIN C, et al. Spontaneousassembly of a self-complementary oligopeptide to form a stablemacroscopic membrane[J].Proc Natl Acad Sci USA, 1993,90(8):3334-3338.
  • 4GHADIRI M R,GRANJA J R, MILLIGAN R A,et al.Self-assembling organic nanotubes based on a cyclic peptidearchitecture [J].Nature, 1993,366(6453) :324-327.
  • 5AGGELI A, NYRKOVA I A, BELL M, et al. Hierarchicalself-assembly of chiral rod-like molecules as a model for pep-tide b-sheet tapes, ribbons? fibrils, and fibers[J].Proc NatlAcad Sci US A, 2001,98(21):11857-11862.
  • 6HARTGERINK J D, BENIASH E, STUPP S I. Self-assem-bly and mineralization of peptide-amphiphile nanofibers [J].Science, 2001, 294(5547):1684-1688.
  • 7RUAN L P, ZHANG H Y,LUO H L, et al. Designed am-phiphilic peptide forms stable nanoweb ? slowly releases en-capsulated hydrophobic drug,and accelerates animal hemosta-sis[J].Proc Natl Acad Sci U S A, 2009, 106 (13) : 5105-5110.
  • 8Qinghan Zhou,Juan Lin,Jing Wang,Feng Li,Fushan Tang,Xiaojun Zhao.A designed amphiphilic peptide containing the silk fibroin motif as a potential carrier of hydrophobic drugs[J].Progress in Natural Science:Materials International,2009,19(11):1529-1536. 被引量:11
  • 9ZHOU Q H, LIN J, YUAN F,et al. Self-assembly from lowdimension to higher conformation of ggx motif in spider silkprotein[J].Current Nanoscience? 2009, 5(4) :457-464.
  • 10SCHNEIDER J P, POCHAN D J, OZBAS B, et al. Respon-sive hydrogels from the intramolecular folding and self-assem-bly of a designed peptide[J].J Am Chem Soc, 2002,124(50):15030-15037.

二级参考文献35

  • 1Zhang S,Holmes TC,Lockshin C,et al.Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane.Proc Natl Acad Sci USA 1993;90(8):3334-8.
  • 2Zhang S.Emerging biological materials through molecular selfassembly.Biotechnol Adv 2002;20(5-6):321-39.
  • 3Zhang S,Altman M.Peptide self-assembly in functional polymer science and engineering.React Funct Polym 1999;41(1-3):91-102.
  • 4Zhang S,Marini DM,Hwang W,et al.Design of nanostructured biological materials through self-assembly of peptides and proteins.Curr Opin Chem Biol 2002;6(6):865-71.
  • 5Zhang S,Holmes TC,DiPersio CM,et al.Self-complementary oligopeptide matrices support mammalian cell attachment.Biomaterials 1995;16(18):1385-93.
  • 6Holmes TC,Lacalle S,Su X,et al.Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proc Natl Acad Sci USA 2000;97(12):6728-33.
  • 7Zhang S,Gelain F,Zhao X.Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures.Semin Cancer Biol 2005;15(5):413-20.
  • 8Davis ME,Motion JP,Narmoneva DA,et al.Injectable selfassembling peptide nanofibers create intramyocardial microenvironments for endothelial cells.Circulation 2005; 111:442-50.
  • 9Zhang S,Yan L,Altman M,et al.Biological surface engineering:a simple system for cell pattern formation.Biomaterials 1999;20(13):1213-20.
  • 10Zhao X,Nagai Y,Reeves PJ,et al.Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin.Proc Natl Acad Sci USA 2006;103(47):17707-12.

共引文献10

同被引文献23

  • 1陈英华,董为人,陈清元,赵冰雷,邹仲之,肖应庆,胡国栋,仇新霞.人发角蛋白-胶原海绵-聚甲基丙烯酸羟乙酯复合生物敷料对大鼠烧伤创面修复作用的实验研究[J].南方医科大学学报,2007,27(11):1621-1626. 被引量:9
  • 2DONZELLI E, SALVADE A, MIMO P, et al. Mesenehymal stem cells cultured on a collagen scaffold: in vitro osteogenie differentiation [J]. Arch Oral Biol, 2007, 52(1): 64-73.
  • 3SHEN Y H, SHOICHET M S, RADISIC M. Vascular endo- thelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells [J]. Acta Bi- omater, 2008, 4(3): 477-489.
  • 4ZHONG S, TEO W E, ZHU X, et al. An aligned nanofi- brous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture [J]. J Biomed Mater Res A, 2006, 79 (3) : 456-463.
  • 5KIYOZUMI T, KANATANI Y, ISHIHARA M, et al. The effect of chitosan hydrogel containing DMEM/F12 medium on full-thickness skin defects after deep dermal burn [J]. Burns, 2007, 33(5): 642-648.
  • 6JAN J S, CHEN P S, HSIEH P L, et al. Silicification of ge- nipin-cross-linked polypeptide hydrogels toward biohybrid ma- terials and mesoporous oxides[J]. ACS Appl Mater Interfaces, 2012, 4(12) 6865-6874.
  • 7YAMAUCHI M, SRICHOLPECH M. Lysine post-transla- tional modifications of collagen [J]. Essays Biochem, 2012, 52: 113-133.
  • 8HE Q F, ZHAO Y N, CHEN B, et al. Improved eellulariza- tion and angiogenesis using collagen scaffolds chemically con- jugated with vascular endothelial growth factor [J]. Acta Biomater, 2011, 7(3): 1084-1093.
  • 9CALIARI S R, WEISGERBER D W, RAMIREZ M A, et al.The influence of eollagen-glycosaminoglyean scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability [J]. J Mech Behav Biomed Ma- ter, 2012, 11(11): 27-40.
  • 10KEMPF M, MIYAMURA Y, LIU P Y, et al. A denatured collagen microfiber scaffotd seeded with human fibroblasts and keratinocytes for skin grafting [J]. Biomaterials, 2011, 32 (21) : 4782-4792.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部