期刊文献+

基于稀疏主元分析的微伏级T波交替幅度量化 被引量:2

Quantifying the Amplitude of Microvolt T Wave Alternans with Sparse Principal Component Analysis
原文传递
导出
摘要 T波交替是心电(ECG)信号中重要的猝死预测因子,其幅度量化具有重要的临床意义。然而,T波交替处于微伏级,并且具有非平稳性,导致精确量化其幅度存在较大困难。本文以逐搏ECG信号的主元分析(PCA)为基础,运用统计检验方法挑选包含T波交替的主元。通过引入稀疏性约束,排除具有较小变异性的变量,实现了主元选择和变量选择。以国际标准数据库的ECG信号为例,在等级相关系数和相对误差两项指标上,对比多种量化方法,本文提出的基于稀疏主元(SPC)的量化方法均具有优势。 T wave alternans in ECG is an important prediction factor for a sudden death. It is crucial in clinic to quan tify the amplitude of T wave alternans. However, T wave alternans are highly non-stationary, which makes accurate quantification very difficult. In this study, we proposed a new method to improve the amplitude quantification. We identified T wave alternans by principal component analysis (PCA) with statistical test, and processed the principal components with T wave alternans further by imposing sparse constraint. We evaluated and compared our method a- gainst other 4 popular solutions on an international benchmark database. The results including rank correlation coef- ficient and relative error indicate that this sparse principal component (SPC) based method is better than others.
作者 向馗 李炳南
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第5期954-959,982,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61101022) 国家科技支撑计划课题资助(2009BAF40B03)
关键词 T波交替 稀疏主元 心电图分析 T wave alternans Sparse principal component (SPC) ECG Analysis
  • 相关文献

参考文献21

  • 1王娟,黄忠朝,刘正春.T波电交替计算机检测及其临床研究进展[J].心血管病学进展,2009,30(6):970-974. 被引量:1
  • 2PUEYO E, MARTINEZ J P, LAGUNA P. Cardiac repolar-ization analysis using the surface electrocardiogram[J].PhilosTrans RSocA,2009, 367(1887): 213-233.
  • 3NARAYAN S M. The pathophysiology guided assessment ofT-wave altemans[M]// CLIFFORD G D, AZUAJE F, MC-SHARRY P E. Advanced methods and tools for ECG data a-nalysis. Norwood; Artech House Publishers, 2006 : 197-214.
  • 4MARTINEZ J P. OLMOS S. Methodological principles of Twave alternans analysis: a unified framework[J].IEEE TransBiomed Eng, 2005,52(4): 599-613.
  • 5张石,佘黎煌,徐中强,宋宇宁.心电T波电交替检测算法综述[J].中国生物医学工程学报,2010,29(3):446-453. 被引量:11
  • 6MONASTERIO V,CLIFFORD G D, LAGUNA P,et al. Amultilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG [J].Ann Biomed Eng,2010, 38(8): 2532-2541.
  • 7MONASTERIO V,LAGUNA P, MARTINEZ J P. Mul-tilead analysis of T-wave alternans in the ECG using principalcomponent analysis[J].IEEE Trans Biomed Eng, 2009,56(7): 1880-1890.
  • 8NEMATI S, ABDALA O, MONASTERIO V, et al. A non-parametric surrogate-based test of significance for T-wave al-ternans detection [J].IEEE Trans Biomed Eng, 2011, 58(5): 1356-1364.
  • 9余辉,李恒达,张力新,杜非.改进的谱分析法定量估算T波电交替的研究[J].中国生物医学工程学报,2011,30(2):213-219. 被引量:8
  • 10BURATTINI L, BINI S, BURATTINI R. Correlation meth-od versus enhanced modified moving average method for auto-matic detection of T-wave alternans [J].Comput MethodsPrograms Biomed, 2010, 98(1) : 94-102.

二级参考文献66

  • 1安勇,张志菓,张建兴,李川勇.心绞痛患者T波交替的检测与分析[J].北京生物医学工程,2007,26(4):381-385. 被引量:1
  • 2Herlng HE. Experimentelle studlen an Sliugetieren tiber das Elektrocardiogram[J]. Zeitschrift fur experimenteUe PathoIogie and Therapie, 1909, 7 : 363 - 378.
  • 3Kaher HH, Schwartz ML. Electricular altermans [ J]. NY State J Med, 1948, 1: 164.
  • 4Hellerstein HK, Liebow IM. Electrical ahernan in experimental coronary artery occlusion [J]. Am J Physiol, 1950, 160:366 - 374.
  • 5Adam DR, Smith JM, Akselrod S, et al. Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation [ J ]. J Electrocardiol, 1984, 17 ( 3 ) : 209 - 218.
  • 6Rosenbaum DR, Jackson LE, Smith JM, et al. Electrical altemans and vulnerability to ventricular arrhythmias [ J ]. N Engl J Med, 1994, 330(4) : 235 -241.
  • 7Laguna P, Ruiz M, Moody GB, et al. Repolarization alternans detection using the KL transform and the beatquency spectrum [A]. In: Computers in Cardiology [C ]. New York: IEEE, 1996. 673-676.
  • 8Nearing BD, Huang AH, Verrier RL. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave [J]. Science, 1991, 252(5004): 437 -440.
  • 9Nearing BD, Verrier RL. Modified moving average analysis of T- wave ahemans to predict ventricular fibrillation with high accuracy [J]. J Appl Physiol, 2002, 92(2): 541 -549.
  • 10Burattini L, Zareba W, Couderc JP, et al. Computer detection of nonstationary T-wave ahernans using a new correlative method [A]. In: Computers in Cardiology [ C]. New York: IEEE, 1997. 673-676.

共引文献13

同被引文献38

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2薄翠梅,李俊,陆爱晶,等.基于核函数和概率神经网络的TE过程监控研究[C]//Proceedings of the 26^th Chinese Control Conference,Zhangjiajie,China,2007:511-515.
  • 3蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 4Chiang L H. Russell E L, Braatz R D.Fault detectionand diagnosis in industrial systems[M].New York : Springer- Verlag, 2001 : 15-25.
  • 5Bishop C M.Pattem recognition and machine learning[M]. New York: Springer-Verlag : 2006 : 559-599.
  • 6Ding S.Model-based fault diagnosis techniques[M].New York : Springer-Verlag, 2008 : 13-49.
  • 7Jolliffe I T.Principal component analysis[M],2nd ed.New York : Springer-Verlag, 2002 : 167-195.
  • 8Qin S J.Statistical process monitoring:basics and beyond[J]. Chemometrics, 2003,17 : 480-502.
  • 9Benaicha A, Mourot G, Benothman K, et al.Determina- tion of principal component analysis models for sen- sor fault detection and isolation[J].International Journal of Control,2013,11(2) :296-305.
  • 10Chen Tao, Sun Yue.Probabilistic contribution analysis for statistical process monitoring: a missing variable approach[J].Control Engineering Practice, 2009, 17 (4) : 469-477.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部