期刊文献+

不含整数2的2-系整数组成的可重集的计数公式

The formular for counting the number of adjoint equivalence graphs of 2-series integers reset except number 2
下载PDF
导出
摘要 为了更好地研究图的组合性质,就特殊图类的伴随等价图的计数问题做了讨论.通过讨论由2-系整数组成且不含整数2的可重集的色等价图的计数问题得到伴随等价图的计数方法.给出了伴随等价图及其补图的色等价图的个数的计算公式.本文提供了一种图的伴随等价计数的新方法,此方法比传统方法更为简洁. In order to study some combinatorial properties of a graph, we discuss the counting problem of the number of the adjoint equivalence graphs. By counting the number of repeated sets which composed by 2-series integers. In this paper, we give a combination formula for computing the number of the hromatic equivalence graphs of its complement graph. Here we provide a new method for counting the number of the adjoint equivalence graphs, and this is more concise than the traditional methods.
出处 《纯粹数学与应用数学》 CSCD 2012年第5期585-589,共5页 Pure and Applied Mathematics
基金 教育部春晖计划(Z2010071)
关键词 伴随多项式 色多项式 伴随等价 色等价 ajoint-polynomial, chromatic-polynomial, adjoint equivalence, chromatic
  • 相关文献

参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications[M]. Amsterdam: North-Holland, 1976.
  • 2Liu Ruying. Adjoint polynomials chromatically unigue, gragh[J]. Discrete Math., 1997(172):85-92.
  • 3王力工,刘儒英.一类树并的补图的色唯一性[J].纯粹数学与应用数学,2001,17(2):126-132. 被引量:12
  • 4张海良.几类图的匹配多项式之间的关系与一类图的匹配等价图[J].纯粹数学与应用数学,2007,23(2):178-182. 被引量:3
  • 5Ma Haicheng, Ren Haizhen. The chromatic classes of the complements of graphs with the minimum real roots of the adioint polynomials greater than -4[J]. Discrete Math., 2004(259):277-294.
  • 6Zhao H X, Li X L, Zhang S G, et al. On the minimum real roots of the-polynomials and chromatic uniqueness of graphs[J]. Discrete Math., 2004(259):277-294.
  • 7马海成.路并的匹配等价图数.数学研究,2006,(2):218-222.
  • 8王青宁.路并伴随等价图计数的一种新方法[J].西安文理学院学报(自然科学版),2008,11(2):63-65. 被引量:2

二级参考文献24

  • 1张海良.图T_(1,1,m)与Q(3,n)中有路因子的充分必要条件及T_(1,1,m)的匹配等价类[J].数学研究,2005,38(2):223-226. 被引量:1
  • 2杜清晏.图的参数π(G)及其图的分类[J].内蒙古大学学报(自然科学版),1995,26(3):258-262. 被引量:36
  • 3刘儒英.一类树的补图的色唯一性[J].应用数学,1996,:170-173.
  • 4[1]Koh K M,Teo K L. The search for chromatically unique graphs[J]. Graphs and Combinatorics, 1990,6:259-285
  • 5[2]Ruying Liu. Adjoint polynomials and chromatically unique graphs[J].Discrete Math,1997,172:8592
  • 6[3]Bondy J A,Murty U S R.Graph theory with applications[M]. Amsterdam:North-Holland publishingcompany, 1976, 1-17
  • 7[4]Cvetkovic D M, Doob M, Gutman I,Torgasev A. Recent result in the theory of graph spectra[M].Amsterdam: North-Holland publishing comply, 1988, 103 - 113
  • 8[8]Cvetkovic D M, Doob M ,Sachs H. Spectra of graphs-theory and application[A]. VEB Deutscher Verlagder Wissenschaften[C]. Berlin. 1980
  • 9[9]Cvetkovic D,Rowlinson P.The largest eigenvalue of a graph:A survey[J].Linear and Multilinear Algebra,1990,28:3-33
  • 10[13]Biggs N. Algebraic graph theory[M]. Second Edition, London :Cambridge University Press,1993,49-50

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部