期刊文献+

求解广义纳什均衡问题的增量罚算法 被引量:1

Incremental penalty method for solving generalized NASH equilibrium problem
下载PDF
导出
摘要 研究每个局中人的决策集都有可能与竞争者的决策集有关的广义纳什均衡问题.给出了该广义纳什均衡问题罚函数形式的再定式.通过分析其KKT点的特点,进一步给出了求解广义纳什均衡问题的增量罚算法. This paper is concerned with the generalized Nash equilibrium problem(GNEP), in which each player's strategy set may depend on the rival players' strategies. We then propose a penalized reformulation for GNEP. Furthermore, we present an incremental penalty method for solving GNEP by analysis characteristic of the KKT points.
作者 罗美菊 吴欧
出处 《纯粹数学与应用数学》 CSCD 2012年第5期599-603,共5页 Pure and Applied Mathematics
基金 辽宁大学青年基金(2011LDQN09)
关键词 广义纳什均衡问题 罚函数 KKT条件 算法 generalized Nash equilibrium problem, penalty function, KKT condition, algorithm
  • 相关文献

参考文献8

  • 1Debreu G. A social equilibrium existence theorem[J]. Proceedings of the National Academy of Sciences, 1952,38:886-893.
  • 2Rosen J B. Existence and uniqueness of equilibrium points for concave N-person games[J]. Econometrica, 1965,33:520-534.
  • 3Harker P T. Generalized Nash games and quasi-variational inequalities[J]. European Journal of Operational Research, 1991,54:81-94.
  • 4Kesselman A, Leonardi S, Bonifaci V. Game-theoretic analysis of internet switching with selfish users[J]. Proceedings of the First International Workshop on Internet and Network Economics, WINE, Lecture Notes in Computer Science, 2005,3828:236-245.
  • 5Pang J S, Scutari G, Facchinei F, et al. Distributed power allocation with rate constraints in Gaussian parallel interference channels[J]. IEEE Transactions on Information Theory~ 2008~54:3471-3489.
  • 6Pang J S, Fukushima M. Quasi-variational inequalities, generalized Nash equilibria, multi-leader-follower games[J]. Computational Management Science, 2005,2:21-56.
  • 7Puflcushima M. A class of gap functions for quasi-variational inequality problems[J]. Journal of Industrial and Management Optimization, 2007,3:165-171.
  • 8Facchinei F, Pang J S. Large-Scale Nonlinear Optimization[M]. Heidelberg: Springer-Verlag~ 2006.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部