期刊文献+

具有免疫反应的乙型肝炎病毒感染动力学分析

Analysis of an HBV infection dynamics model in immune response
下载PDF
导出
摘要 首先建立了具有免疫反应参与的乙型肝炎病毒感染动力学新模型,利用Routh-Hurwitz判据,获得了正平衡点的局部渐近稳定的充分条件.其次建立了具有免疫时滞的数学模型,证明了随着时滞的增加,系统的稳定开关将会发生. Firstly, the new infection dynamic model of Hepatitis B Virus in immune response is established. By using Routh-Hurwitz criteria, the sufficient condition of local asymptotic stability of a positive equilibrium point is obtained. Secondly, the mathematical model with delay of immune response is discussed, and it is proved that the stable switch will occur with the delay increasing.
出处 《纯粹数学与应用数学》 CSCD 2012年第5期635-640,共6页 Pure and Applied Mathematics
基金 湖南省财政厅项目(湘财教字[2010]51号)
关键词 乙型肝炎病毒 免疫反应 时滞 平衡点 稳定性 hepatitis B virus immunity delay equilibrium point, stability
  • 相关文献

参考文献9

  • 1Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection[J]. Proc. Natl. Acad. Sci. USA, 1996,93(9):4398-4402.
  • 2Nowak M A, Bangham C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996,272(5258):74-79.
  • 3Ribeiro R M, Lo A, Perelson A S. Dynamics of hepatitis B virus infection[J]. Microbes Infection. 2002,4(8):829- 835.
  • 4Merrill S J. Modeling the Interaction of HIV with Cells of the Immune System[M]. New York: Springer- Verlag, 1989.
  • 5Murase A, Sasaki T, Kajiwara T. Stability analysis of pathogen-immune interaction dynamics[J]. J. Math. Biol., 2005,51(3):247-267.
  • 6Wang K, Wang W, Pang H, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica D: Nonl. Phen., 2007,226(2):197-208.
  • 7Buric N, Mudrinic M, Vasovic N. Time delay in a basic model of the immune response[J]. Chaos, Solitons & Fractals, 2001,12(3):483-489.
  • 8郑重武,张凤琴.一类具有免疫时滞的病毒动力学模型的稳定性分析[J].纯粹数学与应用数学,2011,27(1):37-44. 被引量:11
  • 9Cooke K L, van den Driessche P. On zeros of some transcendental equations[J]. Funkcialaj Ekvacioj, 1986,29:77-90.

二级参考文献8

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2Bonhoeffer S,May R M,Shaw G M,et al.Virus dynamics and drug therapy[J].Proc.Nat.Acad.Sci.USA,1997,94(13):6971-6976.
  • 3Nowak M A,May R M.Virus Dynamics:Mathematical Principles of Immunology and Virology[M].New York:Oxford University Press,2000.
  • 4Xie Qizhi,Huang Dongwei,Zhang Shuangde,et al.Analysis of a viral infection model with delayed immune response[J].Applied Mathematical Modelling,2010,34(9):2388-2395.
  • 5Elder de Souza,Marcelo Lyra,Iram Gleria.Critical bifurcations and chaos in a delayed nonlinear model for the immune response[J].Chaos,Solitous and Fractals,2009,42(4):2494-2501.
  • 6Kuang Yang.Delay Differential Equations with Applications in Population Dynamics[M].Boston:AcademicPress,1993.
  • 7Cooke K L,van den Driessche P.On zeros of some transcendental equatious[J].Funkcialaj Ekvacioj,1986,29:77-90.
  • 8陈美玲,朱惠延.具免疫时滞的HIV感染模型动力学性质分析[J].生物数学学报,2009,24(4):624-634. 被引量:13

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部