期刊文献+

关于半环上格林关系的开同余 被引量:3

On congruence openings of Green′s relations on a semiring
下载PDF
导出
摘要 首先给出了由半环的乘法半群上的格林关系所确定的半环开同余的性质和刻画.其次,由开同余出发,得到了六个不同的半环类,并证明了这六个半环类均是半环簇.最后,对半环簇的子簇格上的开算子进行了探讨,得到了一些有趣的结果. In this paper we firstly give properties and characterizations of congruence openings of a semiring that is determined by Green's relations of multiplicative semigroup of a semiring. Secondly, we obtain six classes of semirings by means of congruence openings, and prove that these classes of semirins are all varieties of semirings. Finally, we investigate open operators on the lattice of all subvarieties of the variety of semirings and obtain some interesting results.
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 2012年第5期668-675,共8页 Pure and Applied Mathematics
基金 陕西省自然科学基金(2011JQ1017) 西北大学科学研究基金(NC0925)
关键词 半环 格林关系 开同余 半环簇 开算子 semiring, Green's relation, congruence opening, variety of semirings, open operator
  • 相关文献

参考文献9

  • 1Jezek J, Kepka T, Maroti M. The endomorphism semiring of a semilatticeIJ]. Semigroup Forum, 2009,78:21- 26.
  • 2Howie J M. Fundamentals of Semigroup Theory[M]. Oxford: Oxford Science Publication, 1995.
  • 3Damljanovic N, Ciric M, Bogdanovic S. Congruence openings of additive Green's relations on a semir- ing[J]. Semigroup Forum, 2011,82(3):437-454.
  • 4Pastijin F, Zhao X Z. Green's D-relation for the multiplicative reduct of an idempotent semiring[J]. Arch. Math., 2000,36:77-93.
  • 5Pastijin F, Zhao X Z. Varieties of semirings with commutative addition[J]. Algebra Universalis, 2005,54:301- 321.
  • 6Kehayopulu N. Ideal and Green's relations in ordered semigroup[J]. International Journal of Mathematics and Mathematical Sciences, 2006(1):1-8.
  • 7Hall T E. Congruences and Green's relations on regular semigroup[J]. Journal of Algebra, 1973,24:1-24.
  • 8Burris S, Sankppanavar H P. A Course in Universal Algebra[M]. New York: Springer Verlag, 1981.
  • 9Sen M K, Guo Y Q, Shum K P. A class of idempotent semirings[J]. Semigroup Forum, 2000,60:351-367.

同被引文献12

  • 1F.Pastijn,郭聿琦.The lattice of idempotent distributive semiring varieties[J].Science China Mathematics,1999,42(8):785-804. 被引量:18
  • 2DAMUANOVIC N, CIRIC M, BOGDANOVIC S. Congruence openings of additive Green's relations on a semiring [J]. Semigroup Forum, 2011, 82(3): 437 -454.
  • 3PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: Wiley, 1999.
  • 4BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer-Verlag, 1981.
  • 5HOWIE J M. Fundamentals of semigroup theory [M]. Oxford: Clarendon, 1995.
  • 6ZHAO X Z, SHUM K P, GUO Y Q. L-subvarieties of the variety of idempotent semirings [J]. Algebra Universalis, 2001 , 46 (1 - 2) : 75 - 96.
  • 7ZHAO X Z, GUO Y Q, SHUM K P. D-subvarieties of the variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9(1): 15 -28.
  • 8GRILL M P. Green's relations in a semiring [J]. Portugaliae Mathematica, 1970,29(4): 181-195.
  • 9张娟娟.某些半环上Green关系的刻划[J].纯粹数学与应用数学,2009,25(4):716-720. 被引量:2
  • 10郭聿琦,宫春梅,任学明.关于半群上格林关系的一个来龙去脉的综述(英文)[J].山东大学学报(理学版),2010,45(8):1-18. 被引量:10

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部