期刊文献+

PPC去除水源水中突发性重金属铜和锌污染研究 被引量:2

Removal of emergent contamination of Cu^(2+) and Zn^(2+) in source water by potassium permanganate composites
下载PDF
导出
摘要 通过正交试验设计和单纯性优化试验设计模拟了地表水铜含量超标3倍、锌含量超标4倍的情况下,采用高锰酸盐复合药剂(PPC)强化去除这两种重金属的最优应急预案。结果表明,常规工艺对锌的去除率不到10%,对铜的最大去除率为30%;组合工艺去除铜的最优条件是:聚铝投加量为20 mg/L,PPC投加量为5 mg/L,pH值为9,PPC在混凝后1 min投加,此时铜的去除率在90%以上;组合工艺去除锌的最优条件是:聚铝投加量为20 mg/L,PPC投加量为4 mg/L,pH值为8,PPC在混凝前1 min投加,此时锌的去除率在90%以上。 The optimal emergency scheme of the enhanced removal of two kinds of heavy metals CuE+ and Zn2+ was designed and simulated by potassium permanganate composites (PPC) under the condition of excessive three times of Cu2+ and four times of Zn2+ in surface water through orthogonal experiment design and simplex optimization method. The results showed that the removal rate of conventional process on Zn2+ was less than 10% , and the maximum removal rate on CuE+ was 30%. The optimal condition of combined process on Cu2+ removal was when the PAC dosage was 20 mg/L, PPC was added 1 min after coagulation with the dosage of 5 mg/L, pH was 9, and the removal rate of Cu2+ was above 90%. The optimal condition of combined process on Zn2+ removal was when the PAC dosage was 20 mg/L, PPC was added 1 min before coagulation with the dosage of 4 mg/L, pH was 8, and the removal rate of Zn2+ was above 90%.
出处 《供水技术》 2012年第5期22-26,共5页 Water Technology
基金 佛山市院市合作项目(2011BY100291)
关键词 高锰酸盐复合药剂 单纯性优化试验 正交试验 PPC copper zinc simplex optimization method orthogonal experiment
  • 相关文献

参考文献14

  • 1Zhang X J, Chen C, Lin P F, et al. Emergency drinking water treatment during source water pollution accidents in China: origin analysis, framework and technologies [ J ]. Environ Sci Techno1,2011,45 ( 1 ) : 161 - 167.
  • 2Jeong E Y, Ansari M B, Mo Y H, et al. Removal of Cu (II) from water by tetrakis (4-carboxyphenyl) porphyrin-functionalized mesoporous silica [ J ]. J Hazard Mater,2011,185(2 -3) :1 311 - 1 317.
  • 3Miyamoto A, Hayashii H, Canavan E R, et al. Removal of heavy metals from tap water by a cation exchanger [J]. Desalination,1996,104(3) :197 -201.
  • 4Ju F, Hu Y Y, Cheng J H. Removal of chelated Cu(II) from aqueous solution by adsorption-coprecipitation with iron hydroxides prepared from microelectrolysis process [ J ]. Desalination,2011,274 ( 1 - 3 ) : 130 - 135.
  • 5Doula M K. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe- modified form [J]. Water Res, 2009,43 (15) :3 659 -3 672.
  • 6Bhattacharya A K, Mandal S N, Das S K. Adsorption of Zn (II) from aqueous solution by using different adsorbents[J]. Chem Eng J,2006,123 ( 1 - 2) :43 - 51.
  • 7Naiya T K, Chowdhury P, Bhattacharya A K, et al. Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn ( II ) and Cd ( II ) ions from aqueous solutions [ J]. Chem Eng J, 2009,148 ( 1 ) :68 -79.
  • 8Qin Q D, Wang Q Q, Fu D F, et al. An efficient approach for Pb ( II ) and Cd ( II ) removal using manganese dioxide formed in situ [ J ]. Chemical Engineering Journal,2011,172 ( 1 ) :68 - 74.
  • 9陈卫,李圭白,邹浩春.PPC强化混凝除蓝藻除色度效果及致因研究[J].河海大学学报(自然科学版),2006,34(2):140-143. 被引量:11
  • 10瞿芳术,梁恒,雒安国,田家宇,陈忠林,李圭白.高锰酸盐复合药剂预氧化缓解超滤膜藻类污染的中试研究[J].环境科学学报,2010,30(7):1366-1371. 被引量:9

二级参考文献35

  • 1栾兆坤,汤鸿霄.Ⅱ.尾矿砂对重金属的吸附作用[J].环境化学,1993,12(5):356-364. 被引量:24
  • 2刘锐平,杨艳玲,夏圣骥,何文杰,韩宏大,李圭白.水合二氧化锰界面特性及其除污染效能[J].环境化学,2005,24(3):338-341. 被引量:39
  • 3陈卫,李圭白,邹浩春.PPC强化混凝除蓝藻除色度效果及致因研究[J].河海大学学报(自然科学版),2006,34(2):140-143. 被引量:11
  • 4王北福,于水利,镇祥华,荆国林.超滤处理含聚污水过程中通量衰减机理的研究[J].环境科学学报,2007,27(4):568-574. 被引量:16
  • 5杨忠芳 朱立(等).现代环境地球化学[M].北京:地质出版社,1996..
  • 6Amy G. 2008. Fundamental understanding of organic matter fouling of membranes [ J ]. Deselination ,231:45--51.
  • 7Chen J J, Yeh H H,Tseng I C. 2009. Effect of ozone and permanganate on algae coagulation removal- Pilot and bench scale tests [ J ]. Ghenmosphere,74 (6) :840-846.
  • 8Huang J, Graham N, Templeton M R,et al. 2009. A comparison of the role of two blue-green algae in THM and HAA formation[ J]. Wat Res,43 ( 12 ) :3009-3018.
  • 9Jermann D, Pronk W, Meylan S,et al. 2007. Interplay of different NOM fouling mechanisms during uhrafihration for drinking water production[J]. Wat Rcs,41 (8) :1713-1722.
  • 10Kwon B, Park N, Cho J. 2005. Effect of algae on fouling and efficiency of UF membranes [ J ]. Desalination, 179 (3) :203--214.

共引文献538

同被引文献49

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部