期刊文献+

基于空间栅格法的最大Lyapunov指数算法研究 被引量:9

An Algorithm for Computing the Largest Lyapunov Exponent Based on Space Grid Method
下载PDF
导出
摘要 最大Lyapunov指数是判断时间序列是否为混沌的一个重要判据,但传统方法求解的计算量很大,所需时间较长,导致在工程实际应用中受到限制.本文提出了基于空间栅格法的最大Lyapunov指数的改进算法,该方法将重构后的整个相空间进行分割,形成多个小空间,搜索邻近点时只需在其子空间内进行搜索,可以大大提高搜索速度.仿真实验表明改进的邻近点搜索方法无论在有噪声情况下还是在无噪声情况下都具有良好的鲁棒性,可以快速而有效地实现参考点邻域的搜索,极大的缩短了计算时间,且易于编程实现,使混沌信号特征指数的在线提取成为了可能. The largest Lyapunov exponent is an essential criterion to judge whether the time series is chaos or not.However,the traditional methods are complex and time-consuing,which leads to the limitations in engineering application.An improved algorithm based on space grid method for estimating the largest Lyapunov exponent is presented.Firstly,the whole reconstructed phase space is divided into small spaces;then the points locating in these subspaces which are searched when the reference point exists;finally,the characteristic exponent is calculated.Simulation results show that neighborhoods are searched effectively,and the whole calculated time is reduced greatly.In practically,the algorithm is robust to reconstructed parameters,noise and data length,and it is easy to be programmed as well,which make exponents computed of chaos online possible.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第9期1871-1875,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.51179197) 上海交通大学海洋工程国家重点实验室基金(No.1009)
关键词 混沌 LYAPUNOV指数 空间栅格法 chaos Lyapunov exponent space grid method
  • 相关文献

参考文献12

  • 1肖东亮,焦秉立,林春蕾,陆建华.混沌理论在现代信道编码技术中的应用[J].电子学报,2007,35(10):1961-1967. 被引量:10
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3李红达,冯登国.复合离散混沌动力系统与序列密码体系[J].电子学报,2003,31(8):1209-1212. 被引量:10
  • 4Andrew T Parker,Kevin M Short.Reconstructing the keystream from a chaotic encryption scheme [J].IEEE Transactions on Circuits and Systems-I Fundamental Theory and Applications,2001,48(5):624-630.
  • 5Alvarez G,Montoya F,Romera M,et al.Breaking two secure communication systems based on chaotic masking[J].IEEE Transactions on Circuits and Systems-II,2004,51(10):505-506.
  • 6Zhang Han,Wang Xiu Feng,et al.A new image encryption algorithm based on chaos system. International Conference on Robotics,Intelligent Systems and Signal Processing. Changsha,China:IEEE Press,2003:778-782.
  • 7A Wolf,J B Swift,H L Swinney,J A Vastano.Determining Lyapunov exponents from a time series [J].Physica D,1985,16:285-317.
  • 8M T Rosenstein,J J Collins,C J De luca.A practical method for calculating largest Lyapunov exponents from small data sets [J].Physica D,1993,65:117-134.
  • 9N N Oiwa,N Fiedler-Ferrara.A fast algorithm for estimating Lyapunov exponents from time series [J].Physics Letters A,1998,246:117-121.
  • 10熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65

二级参考文献61

  • 1Thabutsu Y Nishio I Sasase S mori.A secret key cryptsystem by iterating a chaotic map [A]..Advance in cryptology-EOROCRYPT′91 [C].Berlin:Springer-verlag,.127-136.
  • 2Ealvarez A Fern_ndez P Garcia J Jiménez A Marcano.New approach to chaotic encryption [J].Physics letters A,1999,263:373-375.
  • 3吴祥兴 陈忠 等.混沌学导论 [M].上海:上海科学技术文献出版社,2001.57-83.
  • 4Ljupcheckc Kocarev.Cgaos-based cryptography:A brief overview [J].IEEE Trans.Circuits Syst.magazina,2001,1(3):6-21.
  • 5Toni Stojanovski Ljupcheckc Kocarev.Chaos-based randomnumber generators-part I:analysis [J].IEEE Trans Circuits Syst.I,2001,48(3):281-288.
  • 6Bruce Sehneier. Applied Cryptgraphy: Protocols, Algorithms, and Source Code in C [M] .John Wiley & Sons Inc, New York, 1993, 191 - 216.
  • 7E Biham. Cryptanalysis of the chaotic-map cryptosystera suggested at EUROCRYPT'91 [ A ]. ed. D. W. Davies, Advance in cryptology-EUROCRYPI91 [ C ]. LNCS 547, Springer-Verlag, Berlin : 532 - 534.
  • 8Marco Gotz, Kristina Kelber, Wolfgang Schwarz. Discrete-time chaotic encryption systems-part 1 : statistical design applied [ J ]. IEEE Trans circuits syst, 1997,44(10) :963 - 970.
  • 9T Habutsu,Y Nishio,I Sasase,S mori. A secret key cryptsystem by iterating a chaotic map [ A ]. Advance in cryptology-EOROCRYPT'91[ C ]. Springer-verlag, Berlin, 127 - 136.
  • 10E Alvarez, A Fermandez, P Garcia, J Jimenez, A Marcano. New approach to chaotic encryption E J ]- Physics letters A, 1999,263 : 373 -375.

共引文献159

同被引文献63

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部