摘要
针对轿车无级变速器的双行星换向机构,综合考虑时变啮合刚度、齿侧间隙、激励频率、综合啮合误差等因素,建立了该行星传动系统的非线性动力学模型。采用自适应变步长Runge—Kutta数值算法,对系统运动方程求解。通过动载荷时域历程、相图、Poincare映射、FFT等途径,分析了某激励频率下系统响应随齿侧间隙的变化历程,以及不同齿侧间隙下系统响应幅值的频域历程。结果表明,随着齿侧间隙的增加,系统响应将逐渐由简谐状态进入混沌状态,但途中存在突变、分岔及周期响应与混沌响应交替出现等复杂的动力学表现;另外,系统响应幅值在频域历程内出现多次跳跃,且随着间隙的增加,振幅跳跃的次数及幅度随之增大,系统的非线性表现增强。
Aiming at the dynamic characteristic of the CVT transmission dual-planetary reversing mechanism,considering backlash,time-varying stiffness,excitation frequency,comprehensive meshing error,the multi-freedom nonlinear dynamics model of the planetary transmission system is established,Then,the differential equation of the system is solved with the Runge-Kutta numerical integration method.Through dynamic load time domain course,phase diagram,Poincare mapping and FFT,the change course of system response with backlash under a excitation frequency and the frequency domain course of system response amplitude under different backlash are analyzed.The result show that with the increase of backlash,the system response will go from harmonic to chaos,but the complex dynamics performance of mutation,bifurcation,period response and chaos response jumping happens is exist in the process.In addition,the system response amplitude jumps jumps repeatedly in the frequency domain course,and with the increase of clearance,the number and range of amplitude jump is increase,the nonlinear of system is enhancement.
出处
《机械传动》
CSCD
北大核心
2012年第10期73-77,共5页
Journal of Mechanical Transmission
基金
国家高技术研究发展计划资助项目(2008AA11A122-03)
关键词
双行星换向机构
非线性
齿侧间隙
混沌
振幅跳跃
Dual planetary reversing mechanism Nonlinear Backlash Chaos Amplitude jumping