期刊文献+

一类n-adic系统的混沌性

Chaotic Behavors for a Class of N-adic Systems
下载PDF
导出
摘要 引进了弱n-adic集映射和具有全n-adic集系统的概念,讨论了弱n-adic集映射具有正拓扑熵条件和具有全n-adic集系统在回复性上的混沌性。证明了n不是2的倍数的n-adic系统是Devaney混沌的,Wiggins混沌的,按序列分布混沌的,分布混沌的,Martelli’s混沌的,ω混沌的,Block and cop-ple混沌的。 In this paper,we introduce the map of weak n-adic systems set and the notion of a full n-adic set system.Then we discuss the condition of weak n-adic set map with positive topological entropy and the chaotic behavior of a full n-adic set system in the recovery.We prove that n-adic systems,in which n is not a power of 2,are Devaney chaotic,Wiggins chaotic,distributional chaos in a sequence,distributional chaos,Martelli's chaotic,W-chaotic,Kato's chaotic,Block and copple chaotic.
出处 《大连民族学院学报》 CAS 2012年第5期463-465,512,共4页 Journal of Dalian Nationalities University
基金 国家自然科学基金项目(10971245) 中央高校基本科研业务费专项资金资助项目(DC12010111 DC110311)
关键词 弱n-adic集 具有全n-adic集系统 混沌 weak n-adic set full n-adic set system chaotic
  • 相关文献

参考文献7

  • 1LIAO Gongfu, WANG Lidong. Almost periodicity china recurrence and chaos [ J ]. Israel. J. Math, 1996, 93,145 -156.
  • 2熊金成.线性映射的动力系统:非游荡点集,拓扑熵以及混乱[J].数学进展,1988,17(1):5-6.
  • 3SMITAL Jaroslav. Distribution chaos for triangular maps chaos[ J]. Solitons Fractals21,2004,11:25 - 28.
  • 4ZBIGNIEW Nitecki. Maps of the interval with closed pe- riodic set[ J]. Proceeding of the American Mathematical Society, 1982,85 (3) : 451 - 456.
  • 5廖公夫,王立冬.几乎周期性与SS混沌集[J].数学年刊(A辑),2002,23(6):685-692. 被引量:13
  • 6ZHOU Zuoling. Weakly almost periodic point and meas- ure center[J]. Science in China (Ser. A),1993,36: 142 - 153.
  • 7SYLVIE Ruette, Chaos for continuous interval maps [ EB/OL]. [ 2012 - 03 - 02 ]. http://www, math. u - psud. fr/- ruette/.

二级参考文献7

  • 1Block, L. S. & Coppel, W. A., Dynamics in one dimension [M], Lecture Notes in Math.,1513, Springer-Verlag, New York, Berlin Heidelberg, 1992.
  • 2Liao Gongfu & Fan Qinjie, Minimal subshifts which display Schweizer-Smital chaos and have zero topological entropy[J],Science in China,Series A,41(1998),33-38;中文版:A辑,27(1997),769-774.
  • 3Walters, P., An introduction to ergodic theory [M], Springer-Verlag, New York, Berlin Heidelberg, 1982.
  • 4Schweizer, B. & Smital, J., Measures of chaos and a spetral decomposition of dynamical systems on the interval [J], Trans. Amer. Math. Soc., 344(1994), 737-754.
  • 5Erdos, P. & Stone, A. H., Some remarks on almost transformation [J], Bull. Amer.Math. Soc., 51(1945), 126-130.
  • 6Gottschalk, W. H., Orbit-closure decompositions and almost periodic properties [J],Bull. Amer. Math. Soc., 50(1944), 915-919.
  • 7Liao Gongfu & Wang Lanyu, Almost periodicity, chain recurrence and chaos [J], Israel J. Math., 93(1996), 145-156.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部