期刊文献+

碳纳米涂层材料的二次电子发射系数及工艺研究 被引量:1

SEY and process of nano-carbon coating material
下载PDF
导出
摘要 采用电泳沉积制备薄膜的方法,在铝合金镀银片上均匀的涂覆纳米碳涂层。研究了不同的电泳电压及电泳时间对涂层形貌结构的影响。扫描电子显微镜(SEM)、二次电子发射系数(SEY)测试结果表明,保持阴阳极间距为1cm,在30V的直流电压下电泳15min所获得的样片涂层均匀、连续、致密且具有明显的陷阱结构。实验表明,其SEY最大值σmax达到2.03,对应的入射能量为500eV,E1能量点在60eV。使用Ar离子轰击清洗表面10min后,样片的SEY最大值σmax达到1.76,对应的入射能量Emax为400eV,E1能量点在80eV。 The nano-carbon powders were coated on the surface of silver-gilt aluminium alloy by the electrophoretic depo- sition (EPD). In this paper, the effect of the different electrophoretic coltage and the electropgoretic time on the morphology structure of coating is studied. Scanning electron microscopy (SEM) measurements reveal that the carbon thin-film electro- phoretically deposited for 15 min at a deposition voltage of 30 V and a electrode separation of 1 cm is uniform and continuous, and has obvious granulatedstructure. The secondary election emission yield (SEY) measurements reveal the secondary election emission (SEE) properties with a of 60 eV and a maximum SEY of 2.03 at 500 eV. After Ar ion bombardment for 10 min were employed to clean the surface, SEE properties with a of 80 eV and a SEY maximum of the sample wafer can reach 1.76 at 400 eV.
出处 《现代电子技术》 2012年第20期143-145,共3页 Modern Electronics Technique
基金 国家重点实验室基金(9140C5304011003)
关键词 纳米碳涂层 电泳沉积 薄膜 二次电子发射 SEY nano-carbon coating electrophoretic deposition film secondary election emission
  • 相关文献

参考文献9

  • 1RODNEY J, VAUGHAN M. Multipactor fellow [J]. IEEE Transactions on Electron Devices, 1988 (1): 7-15.
  • 2张娜,崔万照,胡天存,王新波.微放电效应研究进展[J].空间电子技术,2011,8(1):38-43. 被引量:38
  • 3AGUII.ERA Lydya, MONTERO Isabel. ESA survey on second emission yield of industry materials and their impact on multipactor threshold [C]// MULCOPIM. [S. 1.]."[s. n. ], 2011: 11-15.
  • 4RABOSO D. Multipactor breakdown- present status and where we are heading [C]// MULCOPIM . ES. 1. 1: Es. n. 1, 20081 111-121.
  • 5KOSSYI I A, ANPILOVE A M, BARKHUDAROV E M. Cladding metallic surface with thin film nano-dimensional carbon for diminishing of secondary electron emission yield [C]// MULCOPIM. [S. 1. ]." [s. n. ], 2011: 123-129.
  • 6刘芙,张孝彬,涂江平,程继鹏,孔凡志,孙沿林,卢焕明,陈长聘.碳纳米管的球磨处理及其对储氢性能的影响[J].太阳能学报,2003,24(1):116-120. 被引量:15
  • 7王莉莉,孙卓,陈婷,陈奕卫.电泳法制备碳纳米管场发射阴极的研究[J].真空科学与技术学报,2006,26(1):4-7. 被引量:10
  • 8BRUINING H. Physics and applications of secondary elec- tron emission [M]. NY: McGraw-Hill, 1954.
  • 9CHANG Chao. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds [J].Phys. Plasmas, 2011, 18: 055702.

二级参考文献40

  • 1[1]Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991, 354(6348): 56-58.
  • 2[2]Dresselhaus M S. Fullerenes: Down the stright and narrow[J]. Nature, 1992, 358: 195-197.
  • 3[3]Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature,1996, 382: 54-55.
  • 4[4]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young' s modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381: 678-680.
  • 5[5]Disma F, Aymard L, Dupont L, et al. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbon[J]. J Electrochem Soc, 1996,143: 3959-3971.
  • 6[6]Cheng Hui ming, Yang Quan hong, Liu Chang. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39:1447-1454.
  • 7[7]Chambers A, Park C, Baker RTK, et al. Hydrogen storage in graphite nanofibers [J]. J Phys Chem B,1998, 102: 4253-4256.
  • 8[8]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386: 377-378.
  • 9[9]Ye Y, Ahn C C, Witham C, et al. Hytrogen absorption and cohesive energy of single-walled carbon nanotubes [J]. Appl Phys Lett, 1999, 74(16) : 2307-2309.
  • 10[10]Seung Mi Lee, Ki Soo Park, Young Chul Choi, et al.Hydrogen absorption and storage in carbon nanotubes [J]. Synthetic Metals, 2000, 113: 209-216.

共引文献60

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部