期刊文献+

相交网格下基于最优划分的多密度梯度网格聚类算法

A Multi-density Gradient Grid Clustering Algorithm Based on the Optimal Division of the Intersecting Grid
下载PDF
导出
摘要 为解决网格聚类算法中对参数过于敏感、无法自动识别不同密度梯度类以及不同梯度类间划分不够精确等问题,提出了相交网格下基于最优划分的多密度梯度网格聚类算法(OPMDG).该算法只需用户输入一个大致的密度阀值范围,网格边长自动计算并可自动调节适应,减少了算法对参数的敏感性;提出了二重划分技术,可挖掘不同密度梯度的类;对于处于不同类上的交界点,引入了电荷间吸引力的概念,能有效解决类间聚类精度不高等问题.实验结果表明该算法是有效的. In order to solve the grid clustering algorithm to parameter too sensitive, unable to automatically identify different density and different gradient differentiates precise enough to wait for a problem, the multi-density gradient grid clustering algorithm based on the optimal division of the intersecting grid (OPMDG) is put forward in this paper. The only user input to the algorithm of an approximate density threshold range, the grid side length automatically calculates and adjusts automatically to adapt to reduced sensitivity of the algorithm parameters; the two re-divided technology can mine the class of different density gradient; the introduction of the concept of charge attraction between the junction point in a different class, can effectively solve the clustering accuracy is not high in between classes. The experimental results show that the algorithm is effective.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2012年第5期631-635,共5页 Journal of Henan University:Natural Science
基金 国家自然科学基金(60673087)
关键词 网格聚类 参数半自动化 最优划分 相交网格 多密度梯度 算法 Grid clustering semi-automatic parameter optimal dividing overlapping grids multiple densitygradient algorithm
  • 相关文献

参考文献9

  • 1Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, et al. Automatic subspace clustering of high dimensional data for data mining applications[J]. SIGMOD Conference, 1998:94-105.
  • 2邱保志,沈钧毅.基于网格技术的高精度聚类算法[J].计算机工程,2006,32(3):12-13. 被引量:11
  • 3Wang W, Yang J, STIN R Muntz. A Statistical information grid approach to spatial data[C]. Proceedings of the 23rd VLDB Conference, Morgan Kaufmann, 1997 : 186- 192.
  • 4邱保志,郑智杰.基于局部密度和动态生成网格聚类算法[J].计算机工程与设计,2010,31(2):385-387. 被引量:7
  • 5ZHAO Yanchang, SONG Junde. A grid-based density-isoline clustering algorithm [J] // zhong YC, Cui S, Yang Y. Proc. o{ the Internet Conf. on lnfo-Net. Beijing: IEEE Press, 2001:140-145.
  • 6Ho Seok Kim, Song Gao, Ying Xia, et al. DGCL: An efficient density and grid based clustering algorithm for large spatial Database[C]. WAIM 2006, LNCS4016,2006 : 362- 371.
  • 7Bao-zhi Qiu,Xiang-li Li, Jun-yi Shen. Grid-based clustering Algorithm based on intersecting partition and density estima- tion[C]. PAKDD, 2007:368-377.
  • 8邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 9岳士弘,王正友.二分网格聚类方法及有效性[J].计算机研究与发展,2005,42(9):1505-1510. 被引量:15

二级参考文献28

  • 1邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 2Hinneburg A,Keim D A.Optional Grid-clustering:Towards Breaking the Curse of Dimensionality in High-dimensional Clustering[C].Proc.of the 25th VLDB Conf.,Edinburgh,Scotland,1999:506-517.
  • 3Zhao Yanchang,Song Junde.GDILC:A Gride-based Densith-isoline Clustering Algorithm[C].Proc.of 2001 Int'l Conf.on Info-tech and Info-net,Beijing,China,IEEE 2001:140-145.
  • 4Eden W M,Chow T W S.A New Shifting Grid Clustering Algorithm[J].Pattern Recognition,2003,37(3):503-514.
  • 5Hsu Chihming,Chen Mingsyan.Subspace Clustering of High Dimensional Spatial Data with Noise[C].Advanced in Knowledge Discovery and Data Mining:8th Pacific-Asia Conference,2004:31-40.
  • 6Agrawal R,Gehrke J.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Proc.of the ACM SIGMOD Int'l Conference on Management of Data,Seattle,Washington,1998-06:94-105.
  • 7Zhao Yanchang,Song Junde.A grid-based density-isoline clustering algorithm[C].IEEE,2001.
  • 8Ho Seok Kim,Song Gao,Ying Xia,et al.DGCL:An efficient density and grid based clustering algorithm for large spatial database [C].WAIM,2006:362-371.
  • 9Goil S, Nagesh H, Choudhary A. Mafia: Efficient and scalable subspace clustering for very large data sets [R]. Northwestern University, 1999.
  • 10Qiu Bao-zhi,Li Xiang-li,Shen Jun-yi.Grid-based clustering Al- gorithm based on intersecting partition and density estimation [C].PAKDD 2007 Work Shop on High Performance Data Mining and Application,2007:368-377.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部