期刊文献+

左右逆特征值问题及其最佳逼近问题的(R,S)对称矩阵解 被引量:1

On(R,S)-symmetric matrix solutions of left and right inverse eigenvalue problem and its corresponding best approximation problem
下载PDF
导出
摘要 令R∈Cm×m和S∈Cn×n是2个非平凡卷积矩阵,即R=R-1≠±Im,且S=S-1≠±In。如果一个矩阵A∈Cm×n满足RAS=A,则矩阵A称为(R,S)对称矩阵。本文首先分别给出了左右逆特征值问题的(R,S)对称矩阵解的可解条件和一般表达式;然后,给出了左右逆特征值问题相应的最佳逼近问题的(R,S)对称矩阵解。 Let R∈Cm×m and S∈Cn×n be two nontrivial involutions,i.e.,R=R-1≠±Im and S=S-1≠±In.A matrix A∈Cm×n is called(R,S)-symmetric matrix if A is satisfactory to RAS=A.This paper first gives the solvable conditions and the general expressions of the(R,S)-symmetric solutions for the left and right inverse eigenvalue problem.Then,the corresponding best approximation problem to the left and right inverse eigenvalue problem is also solved over(R,S)-symmetric matrix solution.
作者 尹凤 黄光鑫
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期559-562,共4页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 四川省教育厅重点项目(12ZA008) 四川省教育厅自筹项目(12ZB289) 数学地质四川省重点实验室开放基金资助项目(SCSXDZ2011005)
关键词 左右逆特征值问题 最佳逼近问题 (R S)对称矩阵 MOORE-PENROSE逆 Left and right inverse eigenvalue problem best approximation problem (R S)-symmetric matrix Moore-Penrose inverse
  • 相关文献

参考文献7

  • 1Wilkinson J H. The Algebraic Problem[M]. OxfordOxford University Press, 1965.
  • 2Marina A, Daniel H, Volkeer M,et al. The recur-sive inverse eigenvalue problem [ J]. SIAM MatrixAnal Appl,2000, 22 (1): 392 — 412.
  • 3Zhang L,Xie D X. A class of inverse eigenvalueproblems[J]. Math Sci Acta, 1993, 13(1) : 94 — 99.
  • 4Li F L, Hu X Y,Zhang L. Left and right inverseeigenpairs problem of skew-centrosymmetric matrices[J]. Appl Math Comput, 2006,177(1) : 105 — 110.
  • 5Li F L,Hu X Y,Zhang L. Left and right inverseeigenpairs problem of generalized centrosymmetricmatrices and its optimal approximation problem [J].Appl Math Comput, 2009,212(2) : 481 — 487.
  • 6Liang M L, Dai L F. The left and right inverse eigen-value problems of generalized reflexive and anti-reflexive matrices[J]. J Comput Appl Math, 2010,234 (3): 743-749.
  • 7Trench W F. Characterization and properties of ma-trices with (R, S)-symmetric,(R, S)-skew symmet-ric and (R, S )-conjugate matrices [J]. SIAM JMatrix Anal Appl,2005? 26(2) ; 748 — 757,[参考文献].

同被引文献8

  • 1谢冬秀,张磊.一类反对称阵反问题的最小二乘解[J].工程数学学报,1993,10(4):25-34. 被引量:79
  • 2张忠志,胡锡炎,张磊.线性流形上反埃尔米特广义汉密尔顿矩阵的最小二乘问题与最佳逼近问题[J].数学物理学报(A辑),2006,26(6):978-986. 被引量:8
  • 3Wilkinson J H. The algebraic eigenvalue problem[M] . Oxford : Oxford University Press ,1965.
  • 4Arav M,Hershkowitz D, Mehrmann V. Therecursive inverse eigen value problem [J] . SIAMJournal on Matrix Analysis and Applications,2000(02) :392-412.
  • 5Zhang Lei,Xie D X. A class of inverse eigenvalueproblems[J]. Math Sci Acta, 1993(01 ) :94-99.
  • 6Mao-lin Liang, Li - fang Dai. The left and rightinverse eigenvalue problems of generalizedreflexive and anti - reflexive matrices [J]. Journalof Computational and Applied Mathe - matics,2010(3):743-749.
  • 7Wedin P A. Perturbation theory for pseudo -inverses [J] . BIT,1973,13 :217 -232.
  • 8Sun J G. The stability orthogonal projections[J]. JGrad Sch,1984,1(2) :123-133.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部