期刊文献+

基于欧拉-欧拉方法的冲击波扬尘特征及其影响因素 被引量:11

Dust lifting behind a shock wave:Analysis based on the E-E method
原文传递
导出
摘要 为了研究爆炸冲击波前气流的扬尘特征及其关键影响因素,基于欧拉-欧拉方法,对不同冲击波前流速、沉积粉尘密度和粉尘粒径对扬尘效果的影响进行了模拟研究.结果表明:沉积粉尘在较低的冲击波前流速(100~300m/s)条件下,具有较理想的扬尘效果;粉尘密度在1 000~3 000kg/m3范围内,沉积粉尘的密度对其扬起特征影响较小;粉尘粒径对冲击波的扬尘特征影响明显,在粉尘颗粒较大时(大于0.1mm),由于颗粒受重力作用明显,扬尘效果不佳;在粒径较小时,粉尘可以在巷道空间内得到较好的分散,形成的粉尘团簇的各粉尘层分布均匀. The E-E method was used to study the lifting of dust behind a shock wave. The in- fluence of gas velocity, dust density, and particle diameter on the lifting of dust was studied. The results show efficient lifting of dust when a low gas velocity (100 to 300 m/s) existed be- fore the shock wave. Dust density, 1 000 or 3 000 kg/ma , had little effect on lifting of the dust. Particle size had a significant effect on dust lifting. Dust particles with a diameter above 0. i mm suppress lifting of dust. Finer dusts are lifted efficiently and the resulting dust cloud is more uniform. These results can guide methods for preventing secondary dust explosions after initial gas explosions.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2012年第5期733-738,共6页 Journal of China University of Mining & Technology
基金 中央高校基本科研业务费专项资金项目(2012QNB01) 中国矿业大学人才引进项目(2011RC07) 中国矿业大学青年教师启航计划项目
关键词 瓦斯 爆炸 扬尘 流速 gas explosion dust lifting gas velocity
  • 相关文献

参考文献21

  • 1FLETCHER B. The interaction of a shock with a dust deposit[J]. Journal of Physics D-Applied Phys- ics, 1976, 9 197-202.
  • 2KAUFFMAN C, SICHEL M, WOLANSKI P. Re- search on dust explosions at the University of Michi- gan[Jj. Powder Technology, 1992, 71.. 119-134.
  • 3LEBECKI K, CYP, ULSKI K, SLIZ J, et al. Large scale grain dust explosions-research in Poland [J]. Shock Waves, 1995, 5.. 109-114.
  • 4BOIKO V M, PAPYRIN A N. Dynamics of the for- mation of a gas suspension behind a shock wave slid- ing over the surface of a loose material[J]. Combus- tion Explosion Shock Waves, 1987, 23(2).. 231 235.
  • 5SUZUKI T, ADACHI T. The effects of particle size on shock wave dust deposit interactionEC// NA GATOMO, MAKOTO. Proceedings of the 14th In ternational Symposium on Space Technology and Sci ence. Tokyo: AGNE Publishing Inc, 1984: 483-490.
  • 6KLEMENS R, JOHNSTON V, ALEKSANDER C, et al. Flame acceleration in a grain dust-air mixtures in a long horizontal tubeEC//GMURCZYK G. Pro- ceedings of the fourth internationabcolloquium on dust explosions, Porabka-Kozubnik. Poland: Polish Academy of Sciences, 1990: 338-354.
  • 7LI Y C, HARBAUGH A S, ALEXANDER C G, et al. Deflagration to detonation transition fueled by dust layers[J]. Shock Waves, 1995, 5.- 249-258.
  • 8MATSUI H. Structure and propagation mechanism of the soot ayer detonation[C]// PEDOROV A V. Proceedings of research on the processes of combus- tions and modelling of fires. Khabarovsk.- Khaba- rovsk State University of Technology, 1992: 57-62.
  • 9BORISOV A, SUMSKOI S, KOMISSAROV P. Experimental and numerical modeling of shock wave interaction with a dust layer[C]// BUCKMASTER J. Proceedings of the 17th International colloquium on the dynamics of explosions and reactive systems. Heidelberg: Heidelber Universitv. 1999.
  • 10FEDOROV A V, GOSTEEV Y. Quantitative de- scription of lifting and ignition of organic fuel dusts in shock waves[J]. Journal of Physics IV, 2002, 12: 89-95.

同被引文献105

引证文献11

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部