摘要
针对信号识别率高低由识别模型及特征参数决定的特点,提出融合K均值聚类的多观察序列的Baum-Welch参数重估算法,用于训练隐马尔科夫模型(HMM),通过主分量分析(PCA)对梅尔频率倒谱系数进行变换,并设计与实现一套基于PCA和HMM的心音自动识别系统。实验结果表明,该系统对6类常见心音的平均识别率达到83.3%,性能优于其他心音识别系统。
According to the signal recognition rate decided by recognition model and the characteristic parameters, this paper puts forward the fusion K-means clustering of the observed sequence Baum-Welch parameters estimation algorithm to train Hidden Markov ModeI(HMM), the Principal Component Analysis(PCA) is adopted to transform Mel Frequency Cepstrum Coefficient(MFCC) features. A heart sounds signal automatic diagnosis system is designed based on PCA and HMM. Experimental results show that the average recognition rate of 6 common elasse's heart sounds reaches 83.3%, the performance is better than other heart sound recognition systems.
出处
《计算机工程》
CAS
CSCD
2012年第20期148-151,共4页
Computer Engineering
基金
广西自然科学基金资助项目(A053232)
广西研究生创新基金资助项目(2011105950810M16)
桂林电子科技大学基金资助项目(UF11012Y)
关键词
梅尔频率倒谱系数
主分量分析
隐马尔科夫模型
K均值聚类
Baum-Welch算法
心音识别
Mel Frequency Cepstrum Coefflcient(MFCC)
Principal Component Analysis(PCA)
Hidden Markov ModeI(HMM)
K-means clustering
Baum-Welch algorithm
heart sounds recognition