期刊文献+

基于FRFT和LBP的笑脸识别

Smile Face Recognition Based on Fractional Fourier Transform and Local Binary Pattern
下载PDF
导出
摘要 利用FRFT的时频双重特性和LBP算子能提取纹理图像微小特征的优点,提出一种将分数阶Fourier变换(FRFT)与局域二值模式(LBP)算子相结合的笑脸识别算法。对训练样本进行分数阶Fourier变换,取其变换的幅值信息作为脸部表情特征,与LBP融合进行分类判别,同时采用总体识别率和笑脸识别率统计结果,在RML表情数据库进行仿真验证。实验结果表明,该方法在笑脸识别中相比其他方法的识别性能更好。 For time-frequency characteristics of Fractional Fourier Transform(FRFT) and Local Binary Pattern(LBP) operator have advantages in extracting texture feature,this paper proposes to combine FRFT with LBP for recognizing smile emotion.It takes the amplitude information of transformed FRFT as facial feature,fuses LBP and discriminates smile with proper classification criterion.At the same time,the overall recognition rate and smiling face recognition rate are used to express experimental results.Compared with other methods,simulation results in RML expression database show that the method is effective for smile recognition.
出处 《计算机工程》 CAS CSCD 2012年第20期169-171,175,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61071211)
关键词 笑脸识别 分数阶FOURIER变换 特征提取 局域二值模式算子 GABOR滤波器 smile face recognition Fractional Fourier Transform(FRFT) feature extraction Local Binary Pattern(LBP) operator Gabor filter
  • 相关文献

参考文献10

  • 1Ito A, Wang Xinyue, Suzuki M, et al. Smile and Laughter Recognition Using Speech Processing and Face Recognition from Conversation Video[C] //Proc. of International Conference on Cyberworlds. Singapore: IEEE Press, 2005: 1-8.
  • 2Nakano M, Mitsukura Y, Fukumi M, et al. True Smile Recognition System Using Neural Networks[C] //Proc. of the 9th International Conference on Neural Information Processing. Singapore: [s. n.] , 2002: 1-5.
  • 3Moubayed S A, Baklouti M, Chetouani M, et al. Multimodal Feedback from Robots and Agents in a Storytelling Experi- ment[EB/OL]. (2008-11-11). http://www.citeulike.org/user/nume diart/tag/database.
  • 4Bai Yang, Guo Lihua, Jin Lianwen, et al. A Novel Feature Extraction Method Using Pyramid Histogram Orientation Gradients for Smile Recognition[C] //Proc. of IEEE International Conference on Image Processing. Cairo, Egypt: IEEE Press, 2009.
  • 5Chen Jun, Bai Yang. Classification of Smile Expression Using Hybrid PHOG and Gabor Features[C] //Proc. of IEEE International Conference on Computer Application and System Modeling. Taiyuan, China: [s. n.] , 2010.
  • 6陶 然, 邓 兵, 王 越. 分数阶Fourier变换及应用[M]. 北京: 清华大学出版社, 2009.
  • 7Gao Lei, Qi Lin, Chen Enqing, et al. Recognizing Human Emotional State Based on the Phase Information of the Two Dimensional Fractional Fourier Transform[M] //Qiu G.. Advances in Multimedia Information Processing. Berlin: Germany: Springer, 2010.
  • 8Wang Yongjin, Guan Ling. Recognizing Human Emotional State from Audiovisual Signals[J]. IEEE Transactions on Multimedia, 2008, 10(5): 936-946.
  • 9朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 10Freund Y, Schapire R E. A Decision-theoretic Generalization of On-line Learning an Application to Boosting[C] //Proc. of the 2nd European Conference on Compute Rational Learn in Theory. Berlin, Germany: Springer, 1995: 23-37.

二级参考文献12

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with Gabor wavelets[A]. Third IEEE ConfFace and Gesture Recognition [C] . 1998,200-205.
  • 4Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 ( 12 ) :1357-1362.
  • 5Zhang Z, Lyons M, Schuster M, et al. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron[A].Third IEEE Conf Face and Gesture Recognition [C]. 1998,454-459.
  • 6Lee T. Image representation using 2-D Gabor wavelets[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18 (10) : 959-971.
  • 7Paul Viola, Michael Jones. Robust real-time face dete[J].International Journal of Computer Vision, 2004,57 ( 2 ):137-154.
  • 8Piyanuch Silapachote, Deepak Karuppiah, Allen Hanson.Feature selection using adaboost for face expression recognition[A]. The 4 th IASTED International Conference on Visualization, Imaging, and Image Frocessing[C]. 2004,84-89.
  • 9Vapnik V. Statistical Learning Theory[M]. New York:John Wiley & Sons Inc,1998.
  • 10Bourel F,Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics[A]. Fifth IEEE International Conference on Automatic Face and Gesture Recognition [C] .2002,106-111.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部