期刊文献+

Integrable Deformations of the (2+1)-Dimensional Heisenberg Ferromagnetic Model

Integrable Deformations of the (2+1)-Dimensional Heisenberg Ferromagnetic Model
原文传递
导出
摘要 Based on the covariant prolongation structure technique,we construct the integrable higher-order deformations of the(2+1)-dimensional Heisenberg ferromagnet model and obtain their su(2) × R(λ) prolongation structures.By associating these deformed multidimensional Heisenberg ferromagnet models with the moving space curve in Euclidean space and using the Hasimoto function,we derive their geometrical equivalent counterparts,i.e.,higher-order(2+1)-dimensional nonlinear Schrdinger equations.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第10期463-468,共6页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant Nos. 10975102 and 11031005 Beijing Municipal Commission of Education under Grant No. KZ201210028032
关键词 Heisenberg ferromagnet model integrable deformation nonlinear Schrodinger equation 非线性薛定谔方程 磁链模型 海森堡 Email 变形 磁模型 关键词 管理器
  • 相关文献

参考文献25

  • 1M. Lakshmanan, Phys. Lett. A 61 (1977) 53.
  • 2A.V. Mikhailov and A.B. Shabat, Phys. Lett. A 116 (1986) 19i.
  • 3K. Porsezian, K.M. Tamizhmani, and M. Lakshmanan, Phys. Left. A 124 (1987) 159.
  • 4M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133 (1988) 483.
  • 5K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys. 33 (1992) 1807.
  • 6W.Z. Zhao, Y.Q. Bai, and K. Wu, Phys. Lett. A 352 (2006) 64.
  • 7M. Lakshmanan, Phil. Trans. R. Soc. A 369 (2011) 1280.
  • 8V.G. Makhankov and O.K. Pashaev, J. Math. Phys. 33 (1992) 2923.
  • 9J.F. Guo, S.K. Wang, K. Wu, and W.Z. Zhao, J. Math. Phys. 50 (2009) 113502.
  • 10Z.W. Yan, M. L. Li, K. Wu, and W.Z. Zhao, Commun. Theor. Phys. 53 (2010) 21.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部