期刊文献+

A Finite Genus Solution of the Veselov's Discrete Neumann System

A Finite Genus Solution of the Veselov's Discrete Neumann System
原文传递
导出
摘要 The Veselov's discrete Neumann system is derived through nonlinearization of a discrete spectral problem.Based on the commutative relation between the Lax matrix and the Darboux matrix with finite genus potentials,a special solution is calculated with the help of the Baker-Akhiezer-Kriechever function.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第10期469-474,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 10971200
关键词 Veselov's discrete Neumann system Baker-Akhiezer-Kriechever function finite genus solution Neumann系统 离散 非线性化 矩阵和 谱问题 电位 溶液
  • 相关文献

参考文献15

  • 1V.E. Adler, A.I. Bobenko, and Yu. B. Suris, Commun. Math. Phys. 233 (2003) 513.
  • 2J. Atkinson, J. Hietarinta, and F. Nijhoff, J. Phys. A: Math. Theor. 41 (2008) 142001.
  • 3C. Cao and X. Xu, J. Phys. A: Math. Theor. 45 (2012) 055213.
  • 4C. Cao and G. Zhang, J. Phys. A: Math. Theor. 45 (2012) 095203.
  • 5C. Cao and G. Zhang, Chin. Phys. Lett. 29 (2012) 050202.
  • 6B. Grammaticos, Y. Kosmann-Schwarzbaeh, and T. Tamizhmani, Discrete Integrable Systems, Springer, Berlin (2004).
  • 7J. Hietarinta and D.J. Zhang, J. Phys. A: Math. Theor. 42 (2009) 404006.
  • 8F. Nijhoff, J. Atkinson, and J. Hietarinta, J. Phys. A: Math. Theor. 42 (2009) 404005.
  • 9F. Nijhoff and H. Capel, Acta Appl. Math. 39 (1995) 133.
  • 10Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Proach, Birkh~user, Basel (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部