期刊文献+

Lower Bounds on the Capacities of Quantum Relay Channels

Lower Bounds on the Capacities of Quantum Relay Channels
原文传递
导出
摘要 Three kinds of quantum relay communication models are proposed,i.e.,the quantum single relay model,quantum serial multi-relay model and quantum parallel multi-relay model.The channel capacities of those three kinds of systems are analyzed with the theory of quantum Markov trace-preserving process and the generalized theory of simple multi-hop channel in quantum system.Motivated by the quantum Fano inequality,the lower bounds of that channel capacities are derived.The illustration and simulation present the trends of the lower bounds on the channel capacities of different quantum relay systems based on the depolarizing noisy channel.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第10期487-492,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.60902044 the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0510) the Hunan Provincial Innovation Foundation For Postgraduate under Grant No.CX2011B087 the State Scholarship Fund organized by the China Scholarship Council under Grant No.2011637096 Excellent Doctoral Dissertation Fund of Central South University under Grant No.2011ybjz030 WCU R32-2010-000-20014-0(Korea) FR 2010-0020942(Korea) MEST 2012-002521(NRF Korea)
关键词 quantum communication quantum channel capacity quantum relay 量子系统 中继系统 下界 信道容量 能力 通道 通信模型 马尔可夫
  • 相关文献

参考文献21

  • 1M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Combridge University Press, Cam- bridge (2000).
  • 2X.L. Ma, M.T. Cheng, G.X. Zhao, and A.M. Yu, Com- mun. Theor. Phys. 57 (2012) 499.
  • 3Y.B. Zhan, L.L. Zhang, Y.W. Wang, and Q.Y. Zhang, Commun. Theor. Phys. 53 (2010) 648.
  • 4G. Smith, J.A. Smolin, and A. Winter, IEEE Trans. Info. Theory 54 (2008) 4208.
  • 5S. Lloyd, Phys. Rev. A 55 (1997) 1613.
  • 6P.W. Shor, The Quantum Channel Capacity and Coherent Information, MSRI Workshop on Quantum Computation (2002).
  • 7I. Devetak, IEEE Trans. Inf. Theory 51 (2005) 44.
  • 8A.N. Zhang, Y.A. Chen, C.Y. Lu, X.Q. Zhou, Z. Zhao, Q. Zhang, T. Yang, and J.W. Pan, arXiv:quant- ph/0508062vl.
  • 9R.H. Shi, J.J. Shi, Y. Guo, X.Q. Peng, and M.H. Lee, Int. J. Theor. Phys. 50 (2011) 2334.
  • 10Y. Guo, R.H. Shi, and G.H. Zeng, Physica Scripta 81 (2010) 045006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部