期刊文献+

Investigation of P T-symmetric Hamiltonian Systems from an Alternative Point of View 被引量:1

Investigation of P T-symmetric Hamiltonian Systems from an Alternative Point of View
原文传递
导出
摘要 Two non-Hermitian PT-symmetric Hamiltonian systems are reconsidered by means of the algebraic method which was originally proposed for the pseudo-Hermitian Hamiltonian systems rather than for the PT-symmetric ones.Compared with the way converting a non-Hermitian Hamiltonian to its Hermitian counterpart,this method has the merit that keeps the Hilbert space of the non-Hermitian PT-symmetric Hamiltonian unchanged.In order to give the positive definite inner product for the PT-symmetric systems,a new operator V,instead of C,can be introduced.The operator V has the similar function to the operator C adopted normally in the PT-symmetric quantum mechanics,however,it can be constructed,as an advantage,directly in terms of Hamiltonians.The spectra of the two non-Hermitian PT-symmetric systems are obtained,which coincide with that given in literature,and in particular,the Hilbert spaces associated with positive definite inner products are worked out.
机构地区 School of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第10期497-503,共7页 理论物理通讯(英文版)
基金 Supported in part by the National Natural Science Foundation of China under Grant No. 11175090 the Fundamental Research Funds for the Central Universities under Grant No. 65030021
关键词 PT symmetry positive definite inner product algebraic method 哈密顿系统 对称系统 Hilbert空间 埃尔米特 希尔伯特空间 代数方法 量子力学 操作员
  • 相关文献

参考文献16

  • 1C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243.
  • 2C.M. Bender, S. Boettcher, and P.N. Meisinger, J. Math. Phys. 40 (1999) 2201.
  • 3B. Bagchi, C. Quesne and M. Znojil, Mod. Phys. Lett. A 16 (2001) 2047.
  • 4C.M. Bender, D.C. Brody, and H.F. Jones, Phys. Rev. Lett. 89 (2002) 270401, [Erratum: Ibid. 92 (2004) 119902].
  • 5S. Weigert, Phys. Rev. A 68 (2003) 062111.
  • 6L. Feng, et al., Science 333 (2011) 729; and the references therein.
  • 7W. Pauli, Rev. Mod. Phys. 15 (1943) 175.
  • 8F.G. Scholtz, H.B. Geyer, and F.J.W. Hahne, Ann. Phys. (N.Y.) 213 (1992) 74.
  • 9A. Mostafazadeh, J. Math. Phys. 43 (2002) 205.
  • 10A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部