期刊文献+

云计算网络中的主动免疫隔离传播模型 被引量:3

Active Immunization and Isolation Propagation Model in Cloud Computing Network
下载PDF
导出
摘要 对云服务所涉及的相关要素进行抽象,提取其生态防御特性,并根据人工免疫系统中的病毒传播理论,建立一种具有主动免疫隔离功能的SEIR类传播模型。该模型可以主动采取预防措施,使其免受病毒入侵。根据不同的网络危险程度,采取不同的隔离策略,从而最大程度地保证云环境中服务行为的安全。仿真结果证明,该模型具有较高的自适应性、鲁棒性、入侵容忍和自愈能力,能有效控制云计算网络中危险的传播。 This paper extracts related factors involved by services in cloud environment and proposes the character of ecological defense of cloud computing networks.An analogous SEIR propagation model with active immunization and isolation function is established by using virus propagation theory in biological immune system.The model aims at taking preventive measures actively before risk behaviors emerge in cloud computing networks and adopting a different isolation strategy with the status of current network to guarantee the security of services in cloud environment as possible.Simulation results show that the model has self-adaptivity,robustness,intrusion-tolerance and self-healing,and it is an effective method of controlling risks emerge in cloud environment.
出处 《计算机工程》 CAS CSCD 2012年第19期96-99,共4页 Computer Engineering
基金 国家自然科学基金资助项目"工程信息中小世界效应研究"(60873208) 河北省自然科学基金资助项目"网络安全生态防御体系研究"(F2009000927)
关键词 云计算网络 病毒传播 生态系统 传播模型 主动免疫 隔离机制 cloud computing network virus propagation ecological system propagation model active immunization isolation mechanism
  • 相关文献

参考文献9

  • 1Jamil D, Zaki H. Cloud Computing Security[J]. International Journal of Engineering Science and Technology, 2011, 3(4): 3478- 3483.
  • 2Mowbray M, Pearson S. A Client-based Privacy Manager for Cloud Computing[C]//Proc. of the 4th International Conference on Communication System Software and Middleware. New York, USA: Association for Computing Machinery, 2009.
  • 3Pearson S. Taking Account of Privacy When Designing Cloud Cornputing Services[C]//Proc. of 2009 Workshop on Software Engineering Challenges of Cloud Computing. Washington D. C., USA: IEEE Computer Society, 2009.
  • 4Kang Z, Kumar A, Harrison T P, et al. Analyzing the Resilience of Complex Supply Network Topologies Against Random and Targeted Disruptions[J]. IEEE Systems Journal, 2011, 5(1): 28-39.
  • 5周佳华,周双全,黄樟灿.一种小世界网络上L-SIRS类疾病传播模型[J].武汉理工大学学报,2010,32(12):133-136. 被引量:2
  • 6夏承遗,刘忠信,陈增强,袁著祉.复杂网络上带有直接免疫的SIRS类传染模型研究[J].控制与决策,2008,23(4):468-472. 被引量:35
  • 7Masuda N, Konno N. Multi-state Epidemic Process on Complex Networks[J]. Theoretical Biology, 2006, 243(1): 64-75.
  • 8Hill A L. Emotions as Infectious Diseases in a Large Social Network: The SISa Model[J]. The Royal Society of London, 2010, 277(1701): 3827-3835.
  • 9Barabdsi A L, Albert R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(10): 509-512.

二级参考文献32

  • 1李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:45
  • 2许丹,李翔,汪小帆.局域世界复杂网络中的病毒传播及其免疫控制[J].控制与决策,2006,21(7):817-820. 被引量:20
  • 3XIA Chengyi,LIU Zhongxin,CHEN Zengqiang,YUAN Zhuzhi.Dynamic spreading behavior of homogeneous and heterogeneous networks[J].Progress in Natural Science:Materials International,2007,17(3):358-365. 被引量:11
  • 4Watts D J, Strogatz S H. Collective Dynamics of Small-world Networks[J]. Nature, 1998, 393 (6684) :440-442.
  • 5Kermack W O, McKendrick A G. Contributions to the Mathematical Theory of Epidemics [ J ]. Proc Roy Soc, 1927 (A115) : 700-721.
  • 6Bailey N T J. The Mathematical Theory of Infections Diseases and Its Applications[M]. Second Edition. New York: Hafner Press, 1975.
  • 7Anderson R M, May R M. Infections Diseases of Humans, Dynamic and Control[ M]. Oxford: Oxford University Press, 1992.
  • 8Diekrnann O, Heesterbeek J A P. Mathematical Epidemiology of Infectious Diseases[ M]. New York:[ s. n. ], 2000.
  • 9Bai Wenjie, Zhou Tao, Wang Binghong. Immunization of Susceptible-infected Model on Scale-free Networks[J ]. Physica A, 2009,384 (2) : 656-662.
  • 10Pastor-Satorras R, Vespignani A. Epidemic Dynamics and Endemic States in Complex Networks[J]. Phys Rev E, 2001, 63(6) :66-117.

共引文献34

同被引文献22

  • 1Song Lipeng, Jin Zhen, Sun Guiquan. Modeling and analyzing of botnet interactions[J]. Physiea A, 2011, 390: 347-358.
  • 2Jackson J T. Virus propagation in heterogeneous bluetooth networks with human behaviors[J]. IEEE Transactions on Dependable and Secure Computing, 2012, 9: 930-943.
  • 3Li Yihong, Pan Jinxiao, Jin Zhen. Dynamic modeling and analysis of the email virus propagation E J ]. Discrete Dynamics in Nature and Society, 2012 : 1-22.
  • 4Mishra B K, Jha N. immunity after run of computer nodes [-J . Fixed period of temporary anti-malicious software on Applied Mathematics andComputation, 2007, 190: 1207-1212.
  • 5Madar N, Kalisky T, Cohen R, et al. Immunization and epidemic dynamics in complex networks[J]. Eur. Phys. J. B, 2004, 38: 269-276.
  • 6Datta S, Wang H. The effectiveness of vaccinations on the spread of email-borne computer viruses [C]. IEEE CCECE/CCGEL, IEEE, 2005: 219-223.
  • 7May R M, Lloyd A I: Infection dynamics on scale- free networks[J]. Phys. Rev. E, 2001, 64, 066112.
  • 8Zou C C, Gong W, Towsley D. Worm propagation modeling and analysis under dynamic quarantine defense[C]. Proceedings of the ACM Workshop on Rapid Malcode, ACM, 2003: 51-60.
  • 9Chen T, Jamil N. Effectiveness of quarantine in worm epidemics[C]. IEEE International Conference on Communications, 2006: 2142-2147.
  • 10Mishra B K, Jha N. SEIQRS model for the transmission o[ malicious objects in computer network E J. Applied Mathematical Modeling, 2010, 34.- 710-715.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部