期刊文献+

一种基于置信度的代表点选择算法 被引量:1

An Algorithm of Representative Point Selection Based on Confidence
下载PDF
导出
摘要 代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更优的代表点选择方法。与多个经典代表点选择方法进行实验比较,结果表明基于置信度的代表点选择方法在分类准确率和数据降低率上有一定优势。 Representative point selection method aims to reduce the amount of training data instances for nearest neighbor classification algorithms,in order to improve the implementation efficiency and the classification accuracy.By introducing the concept of classification confidence entropy,a new fitness evaluation function is proposed to evaluate the prototype instances,and a new genetic algorithm is designed for representative point selection.This paper demonstrates that the new concept can also be used in other kind of representative point selection methods,in order to improve their performances.Compared with some other famous representative point selection algorithms,experimental results show that confidence based approach has some advantages in improving both the classification accuracy and the data reduction rate.
出处 《计算机工程》 CAS CSCD 2012年第19期167-169,174,共4页 Computer Engineering
关键词 置信度熵 适应度评价函数 代表点选择 k最近邻 半监督学习 遗传算法 confidence entropy fitness evaluation function representative point selection k-nearest neighbor semi-supervised learning genetic algorithm
  • 相关文献

参考文献7

  • 1Hart P E. The Condensed Nearest Neighbor Rule[J]. IEEE Trans. on Information Theory, 1968, 14(5): 515-516.
  • 2Huang S, Chiang C C, Shieh J W, et al. Prototype Optimization for Nearest-neighbor Classification[J]. Pattern Recognition, 2002, 35(6): 1237-1245.
  • 3Duin R P W, Juszczak P, Ridder D, et al. PR-Tools——A Matlab Toolbox for Pattern Recognition[EB/OL]. (2004-12-10). http:// www.prtools.org.
  • 4Sanchez J S. High Training Set Size Reduction by Space Parti- tioning and Prototype Abstraction[J]. Pattern Recognition, 2004, 37(7): 1561-1564.
  • 5Angiulli F. Condensed Nearest Neighbor Data Domain Des- cription[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1746-1758.
  • 6任江涛,丘正元,纪庆革.一种基于投票机制的代表点选择算法[J].计算机应用,2007,27(1):77-79. 被引量:1
  • 7Nanni L, Alessandra L. Prototype Reduction Techniques: A Comparison Among Different Approaches[J]. Expert Systems with Applications, 2011, 38(9): 11820-11828.

二级参考文献13

  • 1SANCHEZ JS.High training set size reduction by space partitioning and prototype abstraction[J].Pattern Recognition,2004,37:1561-1564.
  • 2HART PE.The condensed nearest neighbor rule[J].IEEE Transactions on Information Theory,1968,14 (5):515-516.
  • 3CANO JR,HERRERA F,LOZANO M.Using evolutionary algorithms as instance selection for data reduction in KDD[J].IEEE Transactions on Evolutionary Computation,2003,7(6):561-575.
  • 4WILSON DR,MARTINEZ TR.Reduction techniques for instance-based learning algorithms[J].Machine Learning,2000,38(3):257-286.
  • 5CHEN CH,JOZWIK A.A sample set condensation algorithm for the class sensitive artificial neural network[J].Pattern Recognition Letters,1996,17(8):819-823.
  • 6MOLLINEDA RA,FERRI FJ,VIDAL E.An efficient prototype merging strategy for the condensed 1-NN rule through class-conditional hierachical clustering[J].Pattern Recognition,2002,35 (12):2771-2782.
  • 7MACQUEEN JB.Some methods for classification and analysis of multivariate observations[A].Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability[C].1967.281-297.
  • 8CANO JR,HERRERA F,LOZANO M.Stratification for scaling up evolutionary prototype selection[J].Pattern Recognition Letters,2005,26(7):953-963.
  • 9ALTMCAY H.Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms[J].Pattern Analysis & Applications,2004,7(3):285-295.
  • 10HUANG YS,CHIANG CC,SHIEH JW,et al.Prototype optimization for nearest-neighbor classification[J].Pattern Recognition,2002,35 (6):1237-1245.

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部