期刊文献+

基于神经网络和主元分析的人脸识别算法

Face Recognition Algorithm Based on Neural Network and Principal Component Analysis
下载PDF
导出
摘要 针对高维、小样本的分类问题,提出2个重要的准则,用于估计RBF单元的初始宽度。采用主成分分析方法把训练样本集投影到特征脸空间,以减少维数,用Fisher线性判别式产生一组最具判别性的特征,使不同类间的训练数据尽可能地分开,而同一类的样本尽可能地靠近。实验结果证明,该算法在分类的错误率及学习的效率上都表现出较好的性能。 According to the high dimension,small sample classification problem,this paper puts forward two important criterions to estimate the initial width of RBF unit.Principal Component Analysis(PCA) method used the training sample set is projected onto the eigenface space,in order to reduce the dimensionality,using Fisher linear discriminant to generate a group of the most discriminant features,different classes of the training data can be separated as much as possible,and the same samples are as close as possible.The results prove that this algorithm both in the classification error rate or in the learning efficiency can show excellent performance.
出处 《计算机工程》 CAS CSCD 2012年第19期175-178,共4页 Computer Engineering
基金 广东省自然科学基金资助项目(S2011020002719 10152800001000016)
关键词 人脸检测 特征提取 人脸识别 聚类算法 神经网络 主元分析 face detection feature extraction face recognition clustering algorithm neural network principal component analysis
  • 相关文献

参考文献11

  • 1Girosi F, Poggio T. Networks and the Best Approximation Property[J]. Biological Cybernetics, 1990, 63(3): 169-176.
  • 2Moody J, Darken C J. Fast Leaning in Network of Locally——Tuned Processing Units[J]. Journal of Neural Computation, 2009, 1(2): 281-294.
  • 3徐毅,赵冬娟,梁久祯.二维类增广PCA及其在人脸识别中的应用[J].计算机工程与应用,2012,48(1):202-204. 被引量:2
  • 4Yuan J L, Fine T L. Neural Network Design for Small Training Sets of High Dimension[J]. IEEE Trans. on Neural Networks, 1998. 9(2): 266-280.
  • 5张岩,武玉强.一种改进的模块PCA人脸识别新方法[J].计算机工程与应用,2011,47(26):216-218. 被引量:11
  • 6Pedrycz W. Conditional Fuzzy Clustering in the Design of Radial Basis Function Neural Networks[J]. IEEE Trans. on Neural Networks, 1998, 9(4): 601-612.
  • 7Fukunaga K. Introduction to Statistical Pattern Recognition[M]. 2nd ed. San Diego, USA: Academic Press, 2010.
  • 8Lee S, Kil R M. A Gaussian Potential Function Network with Hierarchically Self-organizing Learning[J]. Neural Networks, 2008, 4(2): 207-224.
  • 9Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Network[J]. IEEE Trans. on Neural Networks, 2009, 20(2): 302-309.
  • 10张睿,于忠党.基于二阶双向二维主成分分析的人脸识别方法[J].计算机工程,2008,34(9):216-218. 被引量:1

二级参考文献24

  • 1陈伏兵,谢永华,严云洋,杨静宇.分块PCA鉴别特征抽取能力的分析研究[J].计算机科学,2006,33(3):155-159. 被引量:17
  • 2Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 71-86.
  • 3Gotturnukkal R.Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter, 2004,25: 429-436.
  • 4Valentin D, Abdi H, O' Toole A J.Connectionist model of face processing: a survey[J].Pattem Recognition, 1994,27 (9) : 1209-1230.
  • 5Chellappa R.Hurnan and machine recognition of faces:a survey[J]. Proceedings of the IEEE, 1995,83(5) :705-740.
  • 6Lu Juwei, Plataniotis K N, Venetsanopoulos A N.Face recognitionusing LDA-based algorithms[J].IEEE Trans Neural Networks, 2003,14(1) : 195-200.
  • 7Kwak K C,Pedrycz W.Face recognition using an enhanced independent component analysis approach[J].IEEE Trans Neural Networks,2007,18(2) :530-541.
  • 8Song F X,Zhang D,A parameterized direct LDA and its applicationto face recognition[J].Neurocomputing,2007,71 : 191-196.
  • 9Sirovich L,Kirby M.Low-dimensional procedure for the characterization of human faces[J].Journal of the Optical Society of America, 1987,4(3) :519-524.
  • 10Kirby M, Sirovich L.Application of the KL Procedure for the characterization of human faces[J].IEEE Trans Pattern Analysisand Machine Intelligence, 1990,12( 1 ) : 103-108.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部