期刊文献+

基于最优特征选择的车辆跟踪方法 被引量:2

Vehicle Tracking Method Based on Optimal Feature Selection
下载PDF
导出
摘要 针对智能交通系统的车辆跟踪问题,提出基于最优特征选择的车辆跟踪方法。综合颜色、纹理和形状特征确定特征集合,采用线性鉴别分析方法从特征集合中选取最优特征,使用Mean Shift算法在最优特征下预测目标位置,根据目标匹配结果确定车辆的运行轨迹,利用特征平滑方法更新特征模型。实验结果表明,该方法适用于不同的公路监控场景,能够准确、有效地跟踪运动目标。 Aiming at vehicle tracking problem of intelligent transportation system,this paper proposes a vehicle tracking method based on optimal feature selection.The method integrates color,texture and shape characteristics to create a feature set,and applies Linear Discriminate Analysis(LDA) method to select optimal characteristics as input features of the Mean Shift algorithm,predicts of the target location,and determines the vehicle's trajectory by matching targets.Feature model is updated by smooth method.Experimental results show that this method can track vehicle accurately and effectively in different highway monitor scenarios.
出处 《计算机工程》 CAS CSCD 2012年第19期195-198,共4页 Computer Engineering
关键词 车辆跟踪 特征选取 MEANSHIFT算法 特征模型更新 密度概率 方向梯度 vehicle tracking feature selection Mean Shift algorithm feature model update density probability direction gradient
  • 相关文献

参考文献8

  • 1Isard M, Blake A. Condensation-conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 2Birchfield S. Elliptical Head Tracking Using Intensity Gradients and Color Histograms[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Santa Barbara, USA: IEEE Computer Society, 1998.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 4Stern H, Efros B. Adaptive Color Space Switching for Face Tracking in Multi-color Lighting Environment[C]//Proc. of IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Press, 2002.
  • 5Collins R T, Liu Yanxi. On-line Selection of Discriminative Tracking Features[C]//Proc. of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE Press, 2003.
  • 6左军毅,梁彦,赵春晖,潘泉.一种新的基于Mean Shift的目标三自由度跟踪算法[J].电子与信息学报,2008,30(1):172-175. 被引量:2
  • 7Comaniciu D, Ramesh V, Meer P. Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proc. of IEEE International Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Computer Society, 2000.
  • 8文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48

二级参考文献10

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2贾静平,柴艳妹,赵荣椿.一种健壮的目标多自由度Mean Shift序列图像跟踪算法[J].中国图象图形学报,2006,11(5):707-713. 被引量:10
  • 3Comaniciu D, Ramesh V, and Meer P, Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 4Zhao Q and Tao H. Object tracking using color correlogram. The 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Beijing, 2005: 263-270,
  • 5Bradski G R. Computer vision face tracking for use in a perceptual user interface. IEEE Workshop on Applications of Computer Vision, Princeton, 1998: 214-219.
  • 6Yang C J, Duraiswami R, and Davis L. Efficient spatial-feature tracking via the mean-shift and a new similarity measure. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 176-183.
  • 7Zhang H H, Huang W M, and Huang Z Y, et al.. Affine object tracking with kernel-based spatial-color representation. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 293-300.
  • 8Comaniciu D and Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 9于剑,石洪波,黄厚宽,孙喜晨,程乾生.Counterexamples to convergence theorem of maximum-entropy clustering algorithm[J].Science in China(Series F),2003,46(5):321-326. 被引量:6
  • 10牟永敏,于剑.极大熵聚类算法的收敛性定理[J].北方交通大学学报,2003,27(5):26-29. 被引量:2

共引文献48

同被引文献16

  • 1M<4~IUGH J, KONRAD J, SALIGRAMA V, et +ft. Foreground-adair- rive background subtr~lction [ J ]. IEEE Signal Processing Letter, 2009, 16(5): 390-393.
  • 2HE Yu-i;eng, LI Jia-tian, WANG llua, et M. Adaptive, w~lfich, shad- ox~ detection algorithm in highway[ C ]//Pmc of IEEE International Symposium on Compulalional Intelligence and I)~'sign. 2012: 240- 243.
  • 3CUCCHIARA R, GRANA C, PICCARDI M, et .I. Detecting mo- ving objects, ghosts, anti slladows in video streams [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337- 1342.
  • 4YANG Tao, PAN Quart, 1,1 S Z, el a/. Multiph, h~,,.c, based hack- gn~und maintenance in complex environment[ C]//Proc of the 3rd In- ternational C~mferen~'c ~,n Image and Graphics. 2004 : 112- 1 t5.
  • 5STAUFFER C, GRIMSON W. Learning patterns of activity using re- ',d-time tracking [ J]. IEEE Yrans on Pattern Recognition and Machine intelligence, 2000, 22 ( 8 ) : 747- 75.
  • 6LEE D S. Improved adaptive mixture learning for robust video hack- ground modeling [ C ]//Proc of IAPR Workshop on Machine Vision for Applications. 2002 : 443-446.
  • 7WANG ~ Z. Integrated region-based image retrieval [M]. Boston: Kluwer Academic Publishers, 2001.
  • 8LEE J E, JIN Rong, JAIN A K, et al. Image retrieval in forensics: Tattoo image database application[ J]. IEEE Multi-Media, 2011 ,19(1) : 40-49.
  • 9KEKRE H B, THEPADE S D, SARODE T K, et al. Image retrieval using texture features extracted using LBG, KPE, KFCG, KMCG, KEVR with assorted color spaces[ J]. international Journal of Ad- vances in Engineering & Technology, 2012,2( 1 ) :520-531.
  • 10RODGERS J L, NICEWANDER W A. Thirteen ways to look at the correlation coefficient [J]. The American Statistician, 1988, 42 (1):59-66.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部