期刊文献+

两位点疾病模型的快速参数求解算法

Fast Parameters Solution Algorithm of Two-point Disease Model
下载PDF
导出
摘要 生成模拟数据对全基因组关联分析(GWAS)算法进行测试时,要求按单位点边缘效应大小计算出疾病模型的相关参数,而目前缺乏对应的公开算法。为此,基于二分搜索提出一个数值算法,根据单位点边缘效应和人群疾病发病率计算出3个典型的两位点疾病模型的控制参数。实验结果表明,该算法能快速精确地进行疾病模型参数求解,便于对GWAS算法进行大规模模拟测试。 Generating simulation data to test algorithms of Genome Wide Association Study(GWAS) usually requires calculating parameters of disease models according to single locus marginal effect sizes,but there are no published methods for the calculation.This paper proposes a numerical algorithm to compute parameters of disease models based on binary search.Given the population prevalence and the single locus marginal effect size,the algorithm can calculate the parameters of three typical two-point disease models.Experimental results show that the algorithm is fast and accurate,and it makes extensive simulation tests of GWAS algorithms easier.
出处 《计算机工程》 CAS CSCD 2012年第19期266-268,273,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61070145) 湖南省自然科学基金资助项目(09JJ3116)
关键词 单核苷酸多态性 边缘效应 多基因交互 发病概率 全基因组关联分析 二分搜索 Single Nucleotide Polymorphisms(SNPs) marginal effect multi-gene interaction incidence probability Genome Wide Association Study(GWAS) binary search
  • 相关文献

参考文献9

  • 1沈佳薇,胡晓菡,师咏勇.全基因组基因-基因相互作用研究现状[J].遗传,2011,33(8):820-828. 被引量:8
  • 2唐劲松,陈晓岗,刘春宇.精神疾病的全基因组关联分析[J].中国神经精神疾病杂志,2010,36(3):184-188. 被引量:9
  • 3王丽,管晓翔,陈龙邦.全基因组关联分析在乳腺癌易感位点筛选中的应用[J].癌症进展,2011,9(3):298-301. 被引量:2
  • 4Cordell H J. Detecting Gene-Gene Interactions That Underlie Human Diseases[J]. Nature Reviews Genetics, 2009, 10(6): 392- 404.
  • 5Li Jing, Horstman B, Chen Yixuan. Detecting Epistatic Effects in Association Studies at a Genomic Level Based on an Ensemble Approach[J]. Bioinformatics, 2011, 27(13): 222-229.
  • 6Wan Xiang, Yang Can, Yang Qiang, et al. BOOST: A Fast Approach to Detecting Gene-Gene Interactions in Genome-wide Case-control Studies[J]. American Journal of Human Genetics, 2010, 87(3): 325-340.
  • 7Zhang Yu, Liu J S. Bayesian Inference of Epistatic Interactions in Case-control Studies[J]. Nat. Genet., 2007, 39(9): 1167-1173.
  • 8Marchini J, Donnelly P, Cardon L R. Genome-wide Strategies for Detecting Multiple Loci That Influence Complex Diseases[J]. Nat. Genet., 2005, 37(4): 413-417.
  • 9Xie Minzhu, Li Jing, Jiang Tao. Detecting Genome-wide Epistases Based on The Clustering of Relatively Frequent Items[EB/OL]. (2011-11-02). http://bioinformatics.oxfordjournals.org/content/ early/2011/11/02/bioinformatics.btr603.

二级参考文献86

  • 1Borecki IB,Province MA.Linkage and association:basic concepts[J].Adv Genet,2008,60:51-74.
  • 2Kruglyak L.The road to genome-wide association studies[J].Nat Rev Genet,2008,9(4):314-318.
  • 3Feingold E.Methods for linkage analysis of quantitative trait loci in humans[J].Theor Popul Biol,2001,60(3):167-180.
  • 4Rice JP,Saccone NL,Corbett J.The lod score method[J].Adv Genet,2001,42:99-113.
  • 5Jimenez-Sanchez G,Childs B,Valle D.Human disease genes[J].Nature,2001,409(6822):853-855.
  • 6Reich DE,Lander ES.On the allelic spectrum of human disease[J].Trends Genet,2001,17(9):502-510.
  • 7Pritchard JK.Are rare variants responsible for susceptibility to complex diseases?[J].Am J Hum Genet,2001,69(1):124-137.
  • 8Altmuller J,Palmer LJ,Fischer G,et al.Genomewide scans of complex human diseases:true linkage is hard to find[J].Am J Hum Genet,2001,69(5):936-950.
  • 9Nordborg M,Tavare S.Linkage disequilibrium:what history has to tell us[J].Trends Genet,2002,18(2):83-90.
  • 10Pritchard JK,Przeworski M.Linkage disequilibrium in humans:models and data[J].Am J Hum Genet,2001,69(1):1-14.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部