期刊文献+

一类离散奇异褶积微分算子的优化方法

Optimal Method for a Kind of Discrete Singular Convolutional Differentiator
下载PDF
导出
摘要 提出了一种优化正则化Shannon核离散奇异褶积微分算子的方法,使得优化后的正则化Shannon核离散奇异褶积微分算子在抑制Gibbs现象的同时,在光滑性、精度等方面也有较大的提高,并运用数值算例进行了试验对比,说明此优化方法的有效性,为褶积微分算子高效地运用到实际问题中提供了强有力的保证. In this paper,a method for optimizing the discrete singular convolutional differentiator with regularized Shannon's kernel is proposed.The optimized discrete singular convolutional differentiator with regularized Shannon's kernel can suppress the Gibbs phenomenon and improve the smoothness and the accuracy.Comparisons of numerical experiments are made to show that the optimization method is effective.The appealing features of the optimized convolutional differentiator would make it more effective in dealing with practical issues.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第9期28-34,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(41204041 41174047) 宁夏大学自然科学基金资助项目(ZR1105)
关键词 正则化Shannon核 褶积微分算子 Gibbs现象 精度 regularized Shannon's kernel convolutional differentiator Gibbs phenomenon accuracy
  • 相关文献

参考文献21

  • 1MORA P. Elastic Finite Difference with Convolutional Operators [R]. California: Stanford Exploration Project Report, 1986.
  • 2FORNBERG B. The Pseudospectral Method: Comparison wilh Finite Differences for the Elastic Wave Equation [J]. Geolhysics, 1987, ,53(4): 483-501.
  • 3WEI G W. Discrete Singular Convolution for the Solution of the Fokker Planck Equation [J]. J Chem Phys, 1999, 110(18) : 8930-8942.
  • 4WEI G W. A Unified Approach for the Solution of the Fokker Planck Equation [J]. J Phys A, 2000, 33(27): 4935-4953.
  • 5WEI G W. Wavelets Generated by Using Discrete Singular Convolution Kernels [J]. J Phys A, 2000, 33 (47): 8577-8596.
  • 6WEI G W. Solving Quantum Eigenvalue Problems by Discrete Singular Convolution[J]. J Phys B, 2000, 33(3); 343-352.
  • 7WEI G W. A New Algorithm for Solving Some Mechanical Problems. [J]. Comput Methods Appl Mech Engrg, 2001, 190(15) : 2017-2030.
  • 8WEI G W. A Unified Method for Computational Mechanics [M] //WANG C M, LEE K H, ANG K K. Computational Mechanics for the Next Millennium. Amsterdam: Elsevier, 1999: 1049-1054.
  • 9WAN D C, PATNAIK B S V, WEI G W. Discrete Singular Convolution Finite Subdomain Method for the Solution oI Incompressible Viscous Flows [J]. Journal of Computational Physics, 2002, 180(1): 229-255.
  • 10程冰洁,李小凡,龙桂华.基于广义正交多项式褶积微分算子的地震波场数值模拟方法[J].地球物理学报,2008,51(2):531-537. 被引量:12

二级参考文献58

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部