期刊文献+

相对FP-内射模

Relative FP-injective Module
下载PDF
导出
摘要 给出了n-FP-内射模的定义,讨论了该模类的左维数、(预)覆盖等问题,并主要证明了该模类在左凝聚环的条件下的一些等价关系,如l.FPn-dim(R)≤n等价于对每个0-FP-内射左R-模有id(M)≥n,等价于对每个n-FP-内射左R-模有fpd(M)≤n等;最后给出了n-FP-内射模的维数的定义和性质,并讨论了该模类在左凝聚环的条件下的一些等价关系,如FPn-inj.dim(M)≤n时等价于在有限表示模N∈FPn下,有Extn+1(N,M)=0等。 Abstract: This paper gave the definition of the n-FP-injective module,discussed the left dimension and (pre) cover of this module. It mainly proved some equivalent relation of the category on the left coherent rings. For ex-ample,l. FP-dim(R)≤n and id(M)≤n of every O-FP-injeetive left R-module are equivalent,and it equivalent to fpd(M)≤n. Finally ,it showed the definition of n-FP-injective module and property of its dimension,and also discussed its equivalent relation on the left coherent rings. For instance,finite represent module N∈ FP.,in the case,Extn^+1(N,M)=0 is equivalent to FPn-inj. dim(M)≤n.
出处 《宿州学院学报》 2012年第8期10-13,共4页 Journal of Suzhou University
基金 宿州学院一般科研项目"Gorenstein代数的同调性质"(2011yyb03)
关键词 余挠理论 FP-投射维数 n-FP-内射模 (预)覆盖 Cotorsion theory FP-projective dimension n-FP-injeetive modules (pre)cover
  • 相关文献

参考文献11

  • 1Anderson F W ,Fuller K R. Rings and Categories of Mod- ules[M]. New York :Springer, 1992 : 204-217.
  • 2Enochs E E ,Jenda O M G. Relative Homologieal Algebra [M ]. New York .. Walter de Gruyter, 2000 : 167-193.
  • 3Mao Lixin ,Ding Nanqing. Relative FP-projective modules I-J-1. Communications in Algebra, 2005,33 : 1587-1602.
  • 4Rotman J J. An Introduction to Homological Algebra[M]. New York : Academic Press, 1979 : 66-86.
  • 5Trlifaj J. Covers, Envelopes and Cotorsion Theories I-R -]. Lecture notes for the workshop,"Homological Methods in Module Theory". Cortona, 2000:10-16.
  • 6Huang Zhaoyong, Tang Gaohua. Self-orthogonal modules over coherent rings[J]. Journal of Pure and Applied Alge- bra, 2001,161 .- 167-176.
  • 7Ding Nanqing,Chen Jianlong. The at dimensions of injee- tire modules[J]. Manuscripta math, 1993,78 : 165-177.
  • 8Stenstrom. Coherent rings and FP-injective modules[J]. Journal London Mathematical Society, 1970(2) : 323-329.
  • 9Garcia Rozas J R. Covers and Envelopes in the categories of complexes of modulesFM]. ChapmanHall/CRC Re- search Notes in Mathematics Series, 1999 : 68-77.
  • 10Xu Jinzhong. Flat Covers of Modules[M]. Lecture Notes in Mathematics. Springer-Verlag, 1996 : 75-80.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部